Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x+y+z)^3-x^3-y^3-z^3
=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)
=(x+y)(y+z)(x+z)
b: x^3+y^3+z^3=1
x+y+z=1
=>x+y=1-z
x^3+y^3+z^3=1
=>(x+y)^3+z^3-3xy(x+y)=1
=>(1-z)^3+z^3-3xy(1-z)=1
=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1
=>1-3z+3z^2-3xy(1-z)=1
=>-3z+3z^2-3xy(1-z)=0
=>-3z(1-z)-3xy(1-z)=0
=>(z-1)(z+xy)=0
=>z=1 và xy=0
=>z=1 và x=0; y=0
A=1+0+0=1
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu x ≥ 0, y ≥ 0, z ≥ 0 thì:
x + y + z ≥ 0
x - y 2 + y - z 2 + z - x 2 ≥ 0
Suy ra:
x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z
Hay: x 3 + y 3 + z 3 3 ≥ x y z
\(x^{2011}+x^{2011}+1+...+1\) (2009 số 1) \(\ge2011\sqrt[2011]{x^{4022}}=2011x^2\)
Tương tự:
\(2y^{2011}+2009\ge2011y^2\); \(2z^{2011}+2009\ge2011z^2\)
Cộng vế:
\(2\left(x^{2011}+y^{2011}+z^{2011}\right)+6027\ge2011\left(x^2+y^2+z^2\right)\)
\(\Rightarrow2011\left(x^2+y^2+z^2\right)\le6033\)
\(\Rightarrow x^2+y^2+z^2\le3\)
Ta có: \(x^2+y^2+z^2=1\)
\(\Rightarrow x\le1,y\le1,z\le1\)
\(\Rightarrow x-1\le0,y-1\le0,z-1\le0\)
\(\Rightarrow x^2\left(x-1\right)\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)
(vì \(x^2,y^2,z^2\ge0\))
\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\).
hay \(x^3+y^3+z^3\le x^2+y^2+z^2=1\).
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\) và \(x^2+y^2+z^2=1\)
\(\Leftrightarrow\left(x,y,z\right)=\left(0;0;1\right)\) và các hoán vị.
Mặt khác theo giả thiết: \(x^3+y^3+z^3=1\).
\(\Rightarrow\left(x,y,z\right)=\left(0;0;1\right)\) và các hoán vị.
\(\Rightarrow xyz=0\)
\(x^3+y^3+z^3=x+y+z+2011\)
\(\Leftrightarrow\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2011\)
\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)=2011\)
ta sẽ chứng minh trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
thật vậy:
gọi 3 số tự nhiên liên tiếp là: a,a+1,a+2 (a thuộc N)
a có 1 trong 3 dạng: 3k;3k+1;3k+2 ( k thuộc N)
+) a=3k => a chia hết cho 3
+) a=3k+1 => a+2=3k+3 chia hết cho 3
+) a=3k+2 => a+1=3k+3 chia hết cho 3
nên: trong 3 số x-1;x;x+1 có 1 số chia hết cho 3; tương tự với 3 số y-1;y;y+1 và: z-1;z;z+1 cũng vậy nên:
(x-1)x(x+1); (y-1)y(y+1); (z-1)z(z+1) đều chia hết cho 3 => (x-1)x(x+1)+(y-1)y(y+1)+(z-1)z(z+1) chia hết cho 3
=> 2011 chia hết cho 3 (vô lí)
nên không tìm được x,y,z thỏa mãn