![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu y=0⇒x2−5x+6=0⇒x∈2;3y=0⇒x2−5x+6=0⇒x∈2;3
-Nếu y=1⇒x2−5x+4=0⇒x∈1;4y=1⇒x2−5x+4=0⇒x∈1;4
-Nếu y>1y>1
3y=(x−2)(x−3)+1⇒x≡1(mod3)⇒x=3k+1(k∈N)3y=(x−2)(x−3)+1⇒x≡1(mod3)⇒x=3k+1(k∈N)
Thay vào đầu bài ta có 9k2−9k+3=3y⇒3k2−3k+1=3y−19k2−9k+3=3y⇒3k2−3k+1=3y−1
Nhận thấy 3y−1⋮3,3k2−3k+1≡1(mod3)⇒3y−1⋮3,3k2−3k+1≡1(mod3)⇒ (loại)
Vậy pt có 4 nghiệm nguyên
![](https://rs.olm.vn/images/avt/0.png?1311)
\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)
\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\)
\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0
Xét pt theo ẩn x ta có để pt có nghiệm thì
∆\(\ge0\)
<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)
<=> - 20y4 + 165y2 - 240\(\ge0\)
<=> 1 < y2 < 7
=> y2 = 4
=> y = (2;-2)
=> x = (2;-2)
![](https://rs.olm.vn/images/avt/0.png?1311)
có 1/x +2/y = 2/2x +2/2y =2 * ( 1/2x +1 /y ) >= 8/2x+y . suy ra 2x+y >= 4 . có 5x^2 +y-4xy+ý^2 = (2x-y)^2 +x^2 +y >= x^2 +y >= 2x+y -1
(vi x^2 +1 >= 2x suy ra x ^2 >= 2x -1 ) suy ra dpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(x^2+4y^2+x=4xy+2y+2\)
\(\Rightarrow x^2-4xy+4y^2+x-2y=2\)
\(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)
\(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\)
Tìm các TH
Mặt khác : \(4x^2+4xy+y^2=2x+y+56\)
\(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)
\(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)
Tìm các TH
\(5x^2-y^2+4xy-9=0\Leftrightarrow\left(5x-y\right)\left(x+y\right)=9\)
\(\Rightarrow\hept{\begin{cases}5x-y=\pm1\\x+y=\pm9\end{cases}}\)hoặc \(\hept{\begin{cases}5x-y=\pm3\\x+y=\pm3\end{cases}}\)
từ đó giải các hệ ta được kết quả, nhưng nhớ chọn kết quả nào mà cả x và y là số nguyên nhé