K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

Ta có : 2x + xy - 3y = 18

=> x(y + 2) - 3y = 18

=> x(y + 2) - 3y - 6 = 18 - 6

=> x(y + 2) - 3(x + 2) = 12

=> (x - 3)(y + 2) = 12

Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}x-3\inℤ\\y+2\inℤ\end{cases}}\)

Lại có : 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6) 

Lập bảng xét 12 trường hợp

x - 3112-1-1234-3-426-2-6
y + 2121-12-143-4-362-6-2
x4152-9670-1591-3
y10-1-14-321-6-540-8-4

Vậy các cặp số (x;y) nguyên thỏa mãn là : (4 ; 10) ; (15 ; - 1) ; (2 ; -14) ; (-9 ; -3) ; (6 ; 2) ; (7 ; 1) ; (0 ; -6) ; (-1 ' 5) ; (5 ; 4) ; (9 ; 0) ;

(1 ; -8) ; (-3 ; -4)

b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)

TH1 : \(\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\Rightarrow5< x^2< 25\Rightarrow x^2\in\left\{9;16\right\}}\)(vì x là số nguyên)

=> \(x\in\left\{\pm3;\pm4\right\}\)

TH2 : \(\hept{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2>25\end{cases}}\Rightarrow x\in\varnothing\)

Vậy \(x\in\left\{\pm3;\pm4\right\}\)

25 tháng 7 2020

2x + xy - 3y = 18

<=> 2x + xy - 6 - 3y = 12

<=> ( 2x + xy ) - ( 6 + 3y ) = 12

<=> x( 2 + y ) - 3( 2 + y ) = 12

<=> ( x - 3 )( 2 + y ) = 12 

Lập bảng :

x-31-12-23-34-46-612-12
x4251607-19-315-9
2+y12-126-64-43-32-21-1
y10-144-82-61-50-4-1-3

Vậy ta có 12 cặp ( x ; y ) thỏa mãn 

( 4 ; 10 ) , ( 2 ; -14 ) , ( 5 ; 4 ) , ( 1 ; -8 ) , ( 6 ; 2 ) , ( 0 ; -6 ) , ( 7 ; 1 )  , ( -1 ; -5 ) , ( 9 ; 0 ) , ( -3 ; -4 ) , ( 15 ; -1 ) , ( -9 ; -3 ) 

9 tháng 1

loading...

28 tháng 10 2023

4:

(x+1)(y-2)=5

=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)

6 tháng 8 2020

nếu x.2 mà để như vậy thì ko hợp lý thì 2 luôn đứng trước x nếu ghi sát nên chắc đề là x^2

\(\left(x^2-5\right)\left(x^2-25\right)\)

để\(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm 

\(\Rightarrow\left(x^2-5\right)\left(x^2-25\right)< 0\)

=> x^2-5 và x^2-25 khác dấu

\(th1\orbr{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2>5\\x^2< 25\end{cases}}}\Leftrightarrow5< x^2< 25\left(tm\right)\)

\(th2\orbr{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2< 5\\x^2>25\end{cases}}}\Leftrightarrow25< x^2< 5\left(vl\right)\)

theo đề x là số nguyên => x^2 là số chính phương thỏa mãn \(5< x^2< 25\)

\(\Rightarrow x^2=9;x^2=16\)

\(\hept{\begin{cases}x^2=9\Leftrightarrow x=\pm3\\x^2=16\Leftrightarrow x=\pm4\end{cases}}\)

vậy với \(x=\pm3;x=\pm4\)thì \(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm

8 tháng 3 2015

1/

a)\(xy-3y+8x=\left(y+8\right)\left(x-3\right)=0\)\(\Rightarrow\)\(x=3\) hoặc \(y=-8\)

b) \(xy-2x+5y=\left(y-2\right)\left(x+5\right)=2\)\(\Rightarrow\)\(\left(y-2\right);\left(x+5\right)\inƯ\left(2\right)\)

\(\Rightarrow\)\(\left(y,x\right)\in\left\{\left(0;-4\right),\left(4;-6\right),\left(1;-3\right),\left(3;-7\right)\right\}\)

2/\(x=2;y=-2;z=-1\)

3/

a)a,c âm ,b dương

b) a,b âm,c dương

5 tháng 3 2017

x^2-2y=5-xy+2x tìm 2 số x,y

biết x,y thuộc z

8 tháng 3 2019

xy - 2x + 3y = 3

x ( y - 2 ) + 3. ( y - 2 ) = 3 - 6

( x + 3 ) ( y - 2 ) = -3 

ta có : -3 = 1 . ( - 3 ) = ( -1 ) . 3

sau đó bạn thử từng trường hợp ra là được

28 tháng 2 2018

=> (xy-2x)-(y-2) = -6+2

=> x.(y-2)-(y-2) = -4

=> (y-2).(x-1) = -4

Đến đó bạn dùng ước bội mà giải nha

Tk mk nha !

14 tháng 2 2019

mình làm nốt phần bảng của anh Quân nhé :

x-1-11-22-44
y-2-44-22-11
x02-13-35
y-260413

kl_