K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 5 2021

Với \(x\le0\)không thỏa mãn. 

Với \(x\ge1\)thì dễ thấy ta sẽ có \(z>y\).

\(\hept{\begin{cases}x+6=3^y\\8x+3=3^z\end{cases}}\Rightarrow8\left(x+6\right)-\left(8x+3\right)=45=8.3^y-3^z\)

\(\Leftrightarrow5.3^2=3^y\left(8-3^{z-y}\right)\)

\(\Rightarrow\hept{\begin{cases}y=2\\z-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\z=3\end{cases}}\)

Suy ra \(x=3\).

Vậy ta có nghiệm \(\left(3,2,3\right)\).

13 tháng 5 2021

Thk you

1 tháng 7 2016

Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này

16 tháng 12 2016

Vì x, y, z là các số nguyên dương nên x,y,z \(\ge1\)

Ta có

\(x^2+y^3+z^4=90\)

\(\Rightarrow z^4< 90\)

Ta thấy rằng \(\hept{\begin{cases}4^4=256>90\\3^4=81< 90\end{cases}}\)nên z không thể lớn hơn 4 được

Hay z nhận các giá trị là 1, 2, 3

Với z = 3 thì

\(x^2+y^3=90-3^4=9\)

Tương tự như trên ta cũng thấy được: y chỉ thể nhận các giá trị 1,2

Thế vô lần lược tìm được: y = 2, x = 1

Xét lần lược các trường hợp của z sẽ tìm được các nghiêm còn lại

Các bộ số cần tìm là: \(\left(x,y,z\right)=\left(1,2,3\right);\left(5,4,1\right);\left(9,2,1\right)\)

Mình chỉ hướng dẫn bạn cách làm thôi nhé.

17 tháng 2 2020

Vì x,y,z là các số nguyên dg nên x,y,z >/1 

Ta có : x+y+z= 90

Suy ra z4 < 90

Ta thấy rằng {4= 256 > 90 , 3= 81 < 90 nên z ko thể >4

Hay z nhận các gt là 1,2,3

Với z=3 thì :

x2

23 tháng 12 2016

Bạn tham khảo ở đây nhé

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath