K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

tui âm 89 nè

11 tháng 2 2016

\(\Leftrightarrow xy+3x^2=3\)

\(\Rightarrow xy+3x^3-3=0\)

=>x=0

Thay x=0 vào biểu thức 3x3+xy=3, ta có :

\(\Rightarrow3.0^3+0.y=3\)

=>y \(\in\left\{\infty;-\infty\right\}\)

vậy x,y có thể \(\in\left\{\infty;-\infty;0\right\}\)

29 tháng 1 2019

Ta có: 3x3 + xy=3

=>x( 3x2 + y) =3

Xét các trường hợp:

* Nếu x= 1 thì y=0

* Nếu x= -1 thì y= -6

* Nếu x= 3 thì y= -26

* Nếu x=-3 thì y= -28

Vay...

16 tháng 8 2023

bạn ơi hình như đề bạn viết nó có sai sai sao ý =(

7 tháng 3 2019

\(3x^2+xy=3\)

\(x\left(3x^2+y\right)=3\)

\(\Rightarrow3⋮x,3⋮\left(3x^2+y\right)\)

\(x\left(3x^2+y\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Từ trên xét tiếp các trường hợp :v rồi ra kết quả

              

                         

21 tháng 6 2016

Dạo này cậu học Toán 8 nâng cao hay trong sgk vậy?

21 tháng 6 2016

toán cơ bản

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)