K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  chia hết xy+1

13 tháng 2 2016

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

Hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  Chia hết xy+1

29 tháng 9 2018

Do \(3x-1⋮y\) và \(3y+1⋮x\)nên \(\left(3x-1\right)\left(3y+1\right)⋮xy\)

\(\Rightarrow9xy+3x+3y+1⋮xy\)

Mà \(9xy⋮xy\)

\(\Rightarrow\frac{3x}{y}+3+y\frac{1}{y}⋮x\)

Do vai trò của x , y như nhau , nên giả sử 

\(\Rightarrow\frac{x}{y}\le1\)

\(\Rightarrow\frac{3x}{y}+3+\frac{1}{y}< 7\)

\(\Rightarrow1< x< 7\)

\(\Rightarrow x=2;3;4;5;6\)

Thay x vào 3x + 1 \(⋮\)y và 3y-1\(⋮x\)

7 tháng 3 2021

Do vai trò bình đẳng của x, y, z trong phương trình,

trước hết ta xét x ≤ y ≤ z.

Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z

=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.

Nếu xy = 1 => x = y = 1,

thay vào (2) ta có : 2 + z = z, vô lí.

Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,

thay vào (2), => z = 3.Nếu xy = 3,

do x ≤ y nên x = 1 và y = 3,

thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)

7 tháng 3 2021

phần kia thì chịu :)