Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0`
`<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0`
`<=> (3x + y - 1)2 = 37 - 2(y + 1)^2`
Vì `(3x+y=1)^2>=0`
`=>2(y+1)^2<=37`
`=>(y+1)^2<=37/2`
Mà `(y+1)^2` là scp
`=>(y+1)^2 in {0,1,4,8,16}`
`=> y + 1 ∈{0; 1; -1; 2; -2; 3; -3; 4; -4}`
`=>y in {-1,0,-2,1,-3,2,-4,3,-5}`
Đến đây dễ rồi thay y vào rồi tìm x thôi!
9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0
<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0
<=> (3x + y - 1)2 = 37 - 2(y + 1)2
Ta có: (3x + y - 1)2 \(\ge\)0 => 37 - 2(y + 1)2 \(\ge\)0
=> (y + 1)2 \(\le\)37/2
Do y nguyên và (y + 1)2 là số chính phương
=> (y + 1)2 \(\in\){0; 1; 4; 9; 16}
=> y + 1 \(\in\){0; 1; -1; 2; -2; 3; -3; 4; -4}
Lập bảng
y + 1 | 0 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 |
y | -1 | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 |
Với y = -1 => (3x - 1 - 1)2 = 37 - 2(-1 + 1)2
<=> (3x - 2)2 = 37
Do x nguyên và (3x - 2)2 là số chính phương
mà 37 là số nguyên tố => ko có giá trị y tm
.... (tự thay y vào)
bài trc sai
\(9x^2+3y^2+6xy-6x+2y-35=0\)
\(\Leftrightarrow\left(9x^2+6xy+y^2\right)-2\left(3x+y\right)+1+2y^2+4y+2=38\)
\(\Leftrightarrow\left(3x+y-1\right)^2+2\left(y+1\right)^2=38\)(*)
\(\Rightarrow\left(3x+y-1\right)^2=38-2\left(y+1\right)^2\le38\)
\(\Rightarrow-\sqrt{38}\le3x+y-1\le\sqrt{38}\)
Từ (*) suy ra 3x + y - 1 chẵn mà 3x + y - 1 nguyên nên \(3x+y-1\in\left\{\pm6;\pm4;\pm2;0\right\}\)
* Nếu \(3x+y-1=\pm6\)thì \(2\left(y+1\right)^2=2\Rightarrow y+1=\pm1\Rightarrow\orbr{\begin{cases}y=-2\\y=0\end{cases}}\)
Th1: \(3x+y-1=6\)
+) \(y=-2\Rightarrow x=3\)
+) \(y=0\Rightarrow x=\frac{7}{3}\left(L\right)\)
Th2: \(3x+y-1=-6\)
+) \(y=-2\Rightarrow x=-1\)
+) \(y=0\Rightarrow x=\frac{-5}{3}\left(L\right)\)
* Nếu \(3x+y-1=\pm4\)thì \(2\left(y+1\right)^2=22\left(L\right)\)
* Nếu \(3x+y-1=\pm2\)thì \(2\left(y+1\right)^2=34\left(L\right)\)
* Nếu 3x + y - 1 = 0 thì \(2\left(y+1\right)^2=38\left(L\right)\)
Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x,y\right)\in\left\{\left(3;-2\right);\left(-1;-2\right)\right\}\)
\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)
\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)
\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương
Sửa đề: \(A=\dfrac{1-3x}{2y}\cdot\sqrt{\dfrac{36y^2}{9x^2-6x+1}}\)
\(=\dfrac{1-3x}{2y}\cdot\sqrt{\left(\dfrac{6y}{3x-1}\right)^2}\)
\(=\dfrac{1-3x}{2y}\cdot\left|\dfrac{6y}{3x-1}\right|\)
x>1/3 nên 3x-1>0
y>0 nên 6y>0
=>\(A=\dfrac{1-3x}{2y}\cdot\dfrac{6y}{3x-1}=-3y\)
Giả sử pt có nghiệm nguyên x, y
\(x^2+2y^2+2xy+3y-4=0\)
\(4x^2+8y^2+8xy+12y=16\)(nhân 4 vào 2 vế)
\(\left(2x+2y\right)^2+\left(4y^2+2.2y.3+9\right)=25\)
\(\left(2x+2y\right)^2+\left(2y+3\right)^2=25\)
Do x,y nguyên => (2x+2y)2 là số chính phương chẵn và (2y+3)2 là số chính phương lẻ
phân tích 25 thành tổng 2 số cp trong đó 1 lẻ 1 chẵn dc 25=16+9=0+25
TH1: (2x+2y)2=16(1);(2y+3)2=9 => \(\orbr{\begin{cases}2y+3=3\\2y+3=-3\end{cases}}\)<=>\(\orbr{\begin{cases}y=0\\y=-3\end{cases}}\)Thay từng TH của y vào (1) để tìm x ra \(\left(x;y\right)\in\left\{\left(2;0\right),\left(-2;0\right),\left(5;-3\right),\left(1,-3\right)\right\}\)
TH2: (2x+2y)2=0(2);(2y+3)2=25 (BẠN TỰ GIẢI NHÉ)
Bài này nhiều nghiệm
https://olm.vn/hoi-dap/detail/81304135821.html
không hiện link thì mình gửi qua nhắn tin nhé