Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{x-1}{2x+3}\)
\(\Rightarrow2xy+3y=xy-y\)
\(\Rightarrow2xy+3y-xy+y=0\)
\(\Rightarrow xy+4y=0\)
\(\Rightarrow\left(x+4\right)y=0\)
\(\Rightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)
Vì \(2x+1\): 2 dư 1
Nên \(\left(2x+1\right)\in\left\{3;-3;-1;1\right\}\)
Khi \(\hept{\begin{cases}2x+1=3\\y-5=4\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=9\end{cases}}}\)
Khi \(\hept{\begin{cases}2x+1=-3\\y-5=-4\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}}\)
Khi \(\hept{\begin{cases}2x+1=-1\\y-5=-12\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-7\end{cases}}}\)
Khi \(\hept{\begin{cases}2x+1=1\\y-5=12\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=17\end{cases}}}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;17\right);\left(-1;-7\right);\left(-2;1\right);\left(1;9\right)\right\}\)
Tôi nghĩ ra cách giải rồi. Cách giải của cậu chưa hay.Nhưng giờ đang bận làm bài tập tết nên khi nào rảnh bạn chữa cho.Cố gắng nghĩ cách hay hơn nhé!
Giải
Ta có : 2x luôn luôn chẵn
\(\Rightarrow2^x+80\)cũng luôn luôn chẵn
Mà \(3^y\)luôn lẻ nên \(2^x\)bắt buột phải lẻ
\(\Rightarrow x=0\)
\(\Rightarrow2^0+80=3^y\)
\(\Rightarrow1+80=3^y\)
\(\Rightarrow81=3^y\)
\(\Leftrightarrow3^4=3^y\)
\(\Rightarrow y=4\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=4\end{cases}}\)
Vì |x|;|y|;|z|\(\ge0\)nên ta tìm được các cặp |x|;|y|;|z|
là:(2;0;0)(0;2;0)(0;0;2)(1;1;0)(1;0;1)(0;1;1)
Sau đó ban tìm ra x;y;z
Đó mới chỉ là giá trị tuyệt đối đó nha bạn.
Có 6 TH đó nha bạn:
Ai tích mình mình tích lại nha.
<=> 4xy-2x-2y=4
<=> 4xy-2x-2y+1=5
<=> 2x(2y-1) -(2y-1)=5
<=> (2x-1)(2y-1)=5
Suy ra bảng sau:
2x-1 | 1 | 5 | -1 | -5 |
2y-1 | 5 | 1 | -5 | -1 |
=>
x | 1 | 3 | 0 | -2 |
y | 3 | 1 | -2 | 0 |
Vậy (x,y)= (1,3);(3,1);(0,-2);(-2,0) thì thỏa mãn đề bài
Lời giải:
$2xy-x+y=3$
$\Rightarrow (2xy-x)+y=3$
$\Rightarrow x(2y-1)+y=3$
$\Rightarrow 2x(2y-1)+2y=6$
$\Rightarrow 2x(2y-1)+(2y-1)=5$
$\Rightarrow (2y-1)(2x+1)=5$
Do $x,y$ là số nguyên nên $2x+1,2y-1$ nguyên. Mà $(2y-1)(2x+1)=5$ nên xét các TH sau:
TH1: $2y-1=1, 2x+1=5$
$\Rightarrow y=1; x=2$
TH2: $2y-1=-1, 2x+1=-5$
$\Rightarrow y=0; x=-3$
TH3: $2y-1=5, 2x+1=1$
$\Rightarrow y=3; x=0$
TH4: $2y-1=-5, 2x+1=-1$
$\Rightarrow y=-2; x=-1$
2xy- x+y = 3
<=> x(2y-1) + y =3
<=> 2x(2y-1) + (2y -1) = 5
<=> (2y-1) (2x+1) = 5 =1.5=(-1).(-5)
lập bảng giá trị
Vậy (x:y)={(2;1),(0;3),(-1;-2),(-3;0)}