Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{x\left(x+2\right)}{2}}=1\frac{2009}{2011}\)
\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{1}{x\left(x+2\right)}=1\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+2\right)}=1\frac{2009}{2011}-1\)
\(\Leftrightarrow\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)\right]=\frac{2009}{2011}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+2}\right)=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+2}=\frac{2009}{2011}\div2=\frac{2009}{4022}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{2}-\frac{2009}{4022}=\frac{1}{2011}\)
\(\Leftrightarrow x=2011-2=2009\)
có \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)
tách vế trái đặt là A
ta lại có\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}\)
\(\frac{1}{2}A=\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x.\left(x+1\right):2}\right)\)
\(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}\)
\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\)
\(\frac{1}{2}A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{x}-\frac{1}{x+1}\right)\)
\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{x+1}\)
\(A=\left(\frac{1}{2}-\frac{1}{x+1}\right):\frac{1}{2}\)
\(A=1+\frac{1}{\left(x+1\right):2}\)
ta thế vào vế trái vào vế phải
ta có\(1+\frac{1}{\left(x+1\right):2}=\frac{2009}{2011}\)
\(\frac{1}{\left(x+1\right):2}=\frac{2009}{2011}-1\)
\(\frac{1}{\left(x+1\right):2}=\frac{2009}{2011}-\frac{2011}{2011}=-\frac{2}{2011}\)
\(-\frac{2}{-\left(x+1\right)}=-\frac{2}{2011}\)
thấy hai tử bằng nhau
\(\Rightarrow-\left(x+1\right)=2011\)
\(\Rightarrow\left(x+1\right)=-2011\)
\(\Rightarrow x=-2011-1=-2012\)
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
2.[1/6+1/12+1/20+...+1/x.(x+1)]=2009/2011
2.[1/2.3+1/3.4+1/4.5+...+1/x(x+1)]=2009/2011
1/2-1/3+1/3-1/4+...+1/x-1/(x+1)=2009/4022
1/2-1/(x+1)=2009/4022
1/(x+1)=1/2001
x+1=2011
x=2010
\(=>\frac{2}{3.2}+\frac{2}{6.2}+\frac{2}{10.2}+...+\frac{2}{x.\left(x+1\right):2.2}=\frac{2009}{2011}\)
\(=>\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2009}{2011}\)
\(=>2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(=>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{2011}:2\)
\(=>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(=>1-\frac{1}{x+1}=\frac{2009}{4022}\)
\(=>\frac{1}{x+1}=1-\frac{2009}{4022}\)
\(=>\frac{1}{x+1}=\frac{2013}{4022}\)
\(=>\frac{2013}{2013.\left(x+1\right)}=\frac{2013}{4022}\)
=>2013.(x+1)=4022
=>x+1=4022/2013
=>x=4022/2013-1
=>x=2009/2013
a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)
đề sai
b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(x=-2004\)
c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)
\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)
\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)
\(x=200\)
d)chịu
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)(nhân mỗi vế với 1/2)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\Rightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\)
\(\Rightarrow x=2010\)
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{n\left(n+1\right)}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{n\left(n+1\right)}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)\)
\(=1-\frac{2}{n+1}\)
\(=\frac{n+1}{n+1}-\frac{2}{n+1}\)
\(=\frac{n-1}{n+1}\)
1+1/3+1/6+1/10+...+1/x.(x+1):2=1+2009/2011
=>2/6+2/12+2/20+...+2/x.(x+1)=2009/2011
=>2.(1/2.3+1/3.4+1/4.5+...+1/x.(x+1))=2009/2011
=>1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=2009/2011:2
=>1/2-1/x+1=2009/4022
=>1/x+1=1/2-2009/4022
=>1/x+1=1/2001
=.x+1=2001
=>x=2001-1
=>x=2000
vậy x=2000