Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo câu trả lời của Trần thị Loan :
Câu hỏi của hyun mau - Toán lớp 8 - Học toán với OnlineMath
Đặt x2 + x + 1 = k2
<=> 4x2 + 4x + 4 = 4k2
<=> 4k2 - 4x2 - 4x + 1 - 5 = 0
<=> (2k)2 - (2x -1)2 = 5
<=> (2k + 2x -1)(2k - 2x - 1) = 5
Vì x, k nguyên nên ta có các trường hợp:
\(TH_1\hept{\begin{cases}2k+2x-1=5\\2k-2x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)
\(TH_2\hept{\begin{cases}2k+2x-1=1\\2k-2x-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)
\(TH_3\hept{\begin{cases}2k+2x-1=-1\\2k-2x-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)
\(TH_4\hept{\begin{cases}2k+2x-1=-5\\2k-2x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)
Vậy các số nguyên x là ( -1; 1 )
đặt x2 - x + 13 = a2
4x2 - 4x + 52 = 4a2
( 4x2 - 4x + 1 ) - 4a2 = -51
( 2x - 1 )2 - ( 2a )2 = -51
( 2x - 1 - 2a ) ( 2x - 1 + 2a ) = -51
từ đó lập bảng => ...
a) \(2xy-y^2-6x+4y=7\)
\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)
\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)
Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).
b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).
Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).
\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).
suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.
A = x(x-1)(x-7)(x-8) = [x.(x- 8)].[(x - 1)(x - 7)] = (x2 - 8x).(x2 - 8x + 7) = (x2 - 8x)2 + 7(x2 - 8x)
Đặt a = x2 - 8x => A = a2 + 7a
để A là số chính phương thì A = b2 (b nguyên)
=> a2 + 7a = b2 => 4a2 + 28a + 49 - 49 - 4b2 = 0 => (2a+ 7)2 - (2b)2 = 49
=> (2a + 7 - 2b).(2a + 7 + 2b) = 49
Vì a, b nguyên nên 2a+ 7 - 2b ; 2a + 7 + 2b thuộc Ư(49) = {49; -49; 1;-1; 7; -7}
trường hợp: 2a + 7 - 2b = 49 và 2a + 7 + 2b = 1 . Cộng vế với vế => 4a + 14 = 50 => a = 9 => b = -12 (nhận)
=> x2 - 8x = 9 => x2 - 8x - 9 = 0 => x = -1; 9
tương tự với các trường hợp còn lại....................................