Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2

\(9x^2+16y^2-144=0\Leftrightarrow\frac{x^2}{16}+\frac{y^2}{9}=1\) là pt chính tắc elip
Bài 2:
I là tâm đường tròn \(\Rightarrow I\) là trung điểm AB \(\Rightarrow I\left(3;5\right)\)
\(R=IA=\sqrt{1^2+2^2}=\sqrt{5}\)
Phương trình: \(\left(x-3\right)^2+\left(y-5\right)^2=5\)
\(\Leftrightarrow x^2+y^2-6x-10y+29=0\)

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:
\(-3=4a+b\)
Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:
\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)
Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)
b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:
\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)
Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé
Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R
\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)
Chọn các điểm:
x 1 3 -1 2 -2
y 4 0 0 3 -5

5.
(x^2 -1)(x^2 +9) <0
(x+3)(x+1)(x-1)(x-3)<0
x \(\in\)(-3;-1)U(1;3)

ĐKXĐ:
a/ \(\left\{{}\begin{matrix}3x+4\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{4}{3}\\x\ne3\end{matrix}\right.\)
b/ \(x^2-5x+6\ne0\Rightarrow\left(x-2\right)\left(x-3\right)\ne0\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}4-x^2\ge0\\\left(x-2\right)\left(x-3\right)\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2\le x\le2\\x\ne2\\x\ne3\end{matrix}\right.\)
\(\Rightarrow-2\le x< 2\)
d/ \(\left\{{}\begin{matrix}4-x\ge0\\2x-10\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le4\\x\ge5\end{matrix}\right.\) \(\Rightarrow x=\varnothing\)
Giả sử:
x² + x + 6 = k² ( k nguyên dương)
\(\text{=> 4x² + 4x + 24 = 4k² }\)
\(\text{=> -(2x+1)² + 4k² = 23 }\)
\(\text{=>(-2k+2x+1)(2k+2x+1) = -23 }\)
Do x, k đều nguyên và k nguyên dương nên 2x + 2k + 1 > 2x +1-2k do đó chỉ xảy ra các trường hợp
TH1: -2k+2x+1 = -1 và 2k+2x+1 = 23
=> x = 5 và k = 6
TH2: -2k+2x+1 = -23 và 2k + 2x +1= 1
=> x = - 6 va k = 6 (loại vì \(k\in N\))
Vậy x = 5