Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
a: Để D là số nguyên thì \(3\sqrt{x}+5⋮2\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+10⋮2\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{1;0;49\right\}\)
b: Để E là số nguyên thì \(\sqrt{x}+2\inƯ\left(10\right)\)
\(\Leftrightarrow\sqrt{x}+2\in\left\{2;5;10\right\}\)
hay \(x\in\left\{0;9;64\right\}\)
c: Để F là số nguyên thì \(\sqrt{x}-3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1-4⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
d: Để G là số nguyên thì \(3\sqrt{x}-6+5⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{9;1;49\right\}\)
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
1)
a) \(\sqrt{x+2}=\dfrac{5}{7}\)
-> x+2 = \(\left(\dfrac{5}{7}\right)^{^2}\)=\(\dfrac{25}{49}\)
-> x = \(\dfrac{25}{49}-2=-\dfrac{73}{49}\)
b) \(\sqrt{x+2}-8=1\)
-> \(\sqrt{x+2}=1+8=9\)
-> \(x+2=9^2=81\)
-> x = 81 -2 = 79
c) 4 - \(\sqrt{x-0,2}=0,5\)
-> \(\sqrt{x-0,2}=4-0,5=3,5\)
-> x - 0,2 = (3,5)2 = 12,25
-> x = 12,25 +0,2 = 12,45
2) a)
Với mọi x thì: \(\sqrt{x+24}\ge0\)
=> \(\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\)
Dấu "=" xảy ra khi : x + 24 = 0 <=> x = -24
Vậy MinA = \(\dfrac{4}{7}\) khi x = -24
a) Để A có giá trị nguyên thì 7 phai chia het cho \(\sqrt{x}\)
⇔ \(\sqrt{x}\in\)Ư(7)
⇔ \(\sqrt{x}\in\left\{1;-1;7;-7\right\}\)
⇔ \(x\in\left\{1;7\right\}\)
Vay x ∈ {1;7}
b) Để b có giá trị nguyên thì 3 phải chia hết cho \(\sqrt{x}-1\)
⇔\(\sqrt{x}-1\) ∈ Ư(3)
⇔\(\sqrt{x}-1\) ∈ {1;-1;3;-3}
⇔ x ∈ {1;3}
Vay ...
c) Xét tương tự như hai câu trên.