Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
Gọi 3 số nguyên liến tiếp lần lượt là a ; a + 1 ; a + 2.
a(a + 1) + a(a + 2) + (a + 1)(a + 2) = 242
a2 + a + a2 + 2a + a2 + 3a + 2 = 242
3a2 + 6a + 2 = 242
3(a2 + 2a) = 242 - 2
a2 + 2a + 1 - 1 = 240 : 3
(a + 1)2 = 80 + 1
(a + 1)2 = 81
\(\left(a+1\right)^2=\left(\pm9\right)^2\)
\(a+1=\pm9\)
a + 1 = \(\pm9\)
a = \(\pm8\)
a + 2 = \(\pm10\)
Vậy 3 số nguyên đó là 8 ; 9 ; 10 hoặc - 8 ; - 9 ; - 10
Gọi 3 số nguyên liên tiếp cần tìm là: a; a + 1; a + 2
Các tích lập được thỏa mãn là: a.(a + 1); (a + 1).(a + 2); (a + 2).a
Ta có: a.(a + 1) + (a + 1).(a + 2) + (a + 2).a = 242
=> a2 + a + (a + 1).a + (a + 1).2 + a2 + 2a = 242
=> a2 + a + a2 + a + 2a + 2 + a2 + 2a = 242
=> 3a2 + 6a + 2 = 242
=> 3a.(a + 2) = 242 - 2 = 240
=> a.(a + 2) = 240 : 3 = 80
=> a.(a + 2) = 8.10 = -10.(-8)
=> a = 8 hoặc a = -10
Vậy 3 số nguyên liên tiếp cần tìm là: 8; 9; 10 hoặc -10; -9; -8