Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu y chẵn thì y=2. Khi đó: $x^2=2y^2+1=2.2^2+1=9\Rightarrow y=3$
Nếu $y$ lẻ:
Ta biết rằng 1 scp khi chia 8 có dư 0,1,4 nên với $y$ lẻ suy ra $y^2$ chia $8$ dư $1$
$\Rightarrow x^2=2y^2+1$ chia $8$ dư $2.1+1=3$
(vô lý vì $x^2$ là scp nên không thể chia 8 dư 3)
Vậy $(x,y)=(3,2)$
\(PT\Leftrightarrow x^2=2y^2+1\). Vì x2 là số chính phương lẻ.
\(\Rightarrow x^2=2y^2+1\equiv1\left(mod4\right)\)mà y số nguyên.
\(\Rightarrow y=2,x=3\)
Ta có:x^2-2x+1=6y^2-2x+2
x^2+1-2=6y^2-2x+2x
x^2-1=6y^2
y^2=x^2-1/6
Vì y^2 thuộc ước của x^2-1/6 suy ra y^2 là số chẵn mà y^2 là số chẵn suy ra y=2
Thay vào ta có:x^2-1/6=4
x^2-1=24
x^2=25
suy ra x=5.Vậy x=5:y=2 (Thử lại nhé)