Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
x^2-2.y^2=1
=>x^2-1=2y^2
=>(x-1)(x+1)=2y^2
Xét tổng (x-1)+(x+1)=2x , là số chẵn
=> x-1 và x+1 cùng chẵn hoặc cùng lẻ
Mà 2y^2 là số chẵn
=> x-1 và x+1 cùng chẵn
=>y^2 là số chẵn
=> y là số chẵn
Mà y là số nguyên tố =>y=2
=> x^2=1+2.2^2=9 => x=3
Vậy y=2 ; x=3
ta có : x^2−2y^2=1⇔x^2=2y^2+1x^2−2y^2=1⇔x2=2y2+1
vì 2y^2+12y^2+1 là số lẻ => x là số lẻ
đặt x=2k+1, ta có: (2k+1)^2−2y^2=1⇔4k2+4k+1−2y^2=1⇔4k2+4k−2y^2=0⇔2k2+2k−y^2=0⇔2(k2+k)=y^2(2k+1)^2−2y^2=1⇔4k2+4k+1−2y^2=1⇔4k2+4k−2y^2=0⇔2k2+2k−y^2=0⇔2(k2+k)=y^2 vì 2(k2+k)^2(k2+k) là số chẵn => y là số chẵn mà y là số nguyên tố =>y=2
thay y=2 vàox^2−2y^2=1x^2−2y^2=1, ta có:
x2−2.22=1⇔x^2=9⇒x=3x^2−2.22=1⇔x2=9⇒x=3(thõa mãn)
vậy x=3 và y=2
\(x^2-2y^2=1\)
nếu cả x và y đều lẻ => \(x^2-2y^2=\)số chẵn mà 1 là số lẻ nên trong x;y phải có 1 số là chẵn :
Nếu x là số nguyên tố chẵn => x=2
= \(4-2y^2=1\) ( loại )
Nếu y là số nguyên tố chẵn => y=2
=> \(x^2-2.2^2=1\)
\(x^2-8=1\)
\(x^2=9\)
\(x^2=3^2\)
=> x=3
Vậy x=3 ; y=2
Theo bài ra, ta có : x2 - 2y2 - 1 = 0 <=> x2 = 1 + 2y2 => x>2 mà x nguyên tố => x lẻ => y chẵn (do 2y2 chẵn) mà y nguyên tố nên y = 2
Khi đó x2 - 2y2 - 1 = 0 <=> x2 - 2.22 = 1 <=> x2 - 8 = 1 <=> x2 = 9 <=> x = 3
Vậy x=3 , y=2
bài của nguyễn quang đức sai rồi mình sửa lại bổ sung thêm nèk
vì x là SNT lớn hơn 2=>x lẻ=> x-1, x+1 chẵn
=>(x-1)(x+1) chia hết cho 4=> 2p^2 chia hết cho 4=> p^2 chia hết cho2 mà p là sô nguyên tố => p = 2 thoả
tự làm tiếp
đúng ko nguyễn quang đức trẻ trâu gà vl