Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)
Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)
\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)
Ta có (x + 1)(y + 2)(z + 3) = 4xyz
<=> \(\frac{\left(x+1\right)\left(y+2\right)\left(z+3\right)}{xyz}=4\)
<=> \(\frac{x+1}{x}.\frac{y+2}{y}.\frac{z+3}{z}=4\)
<=> \(\left(1+\frac{1}{x}\right)\left(1+\frac{2}{y}\right)\left(1+\frac{3}{z}\right)=4\)
=> \(\hept{\begin{cases}1⋮x\\2⋮y\\3⋮z\end{cases}}\); mà x;y;z \(\in P\)=> Không tìm được x;y;z thỏa mãn
Ta có:7(x+y+z) chia hết cho 7 nên \(xyz⋮7\)
Mà 7 là số nguyên tố nên trong ba số x,y,z luôn có một số chia hết cho 7
Không mất tính tổng quát ta giả sử x chia hết cho 7 mà x là số nguyên tố nên x=7
Thay vào ta được:\(7\left(7+y+z\right)=7yz\)
\(\Rightarrow7+y+z=yz\Rightarrow yz-y-z+1=8\Rightarrow\left(y-1\right)\left(z-1\right)=8=1.8=2.4=\left(-1\right).\left(-8\right)\)
\(=\left(-2\right).\left(-4\right)\)
Bạn tự lập bảng xét nha,cuối cùng nếu có x,y,z thỏa mãn thì phải vậy x,y,z là hoán vị nha....