K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
29 tháng 1 2023
Lời giải:
Nếu $p$ lẻ thì $p+3$ chẵn. Khi đó $p+3$ là nguyên tố khi $p+3=2$
$\Rightarrow p=-1$ (vô lý- loại)
Nếu $p$ chẵn thì $p+10$ chẵn. Khi đó $p+10$ là nguyên tố khi $p+10=2$
$\Rightarrow p=-8$ (vô lý - loại)
Vậy không tồn tại số nguyên tố $p$ thỏa mãn đề.
15 tháng 2 2022
\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)
Ta có bảng:
x-1 | -1 | -3 | 1 | 3 |
2y+1 | -3 | -1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -2 | -1 | 1 | 0 |
Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)
p = 2 thì \(8p^2+1=8.2^2+1=33\)
Mà 33 chia hết cho 3 và 33 > 3 nên \(8p^2+1\) không là số nguyên tố. (loại p = 2)
Nếu p = 3 thì \(8p^2+1=8.3^2+1=73\)
Vì 73 là số nguyên tố nên p = 3 thỏa mãn
Nếu p là số nguyên tố > 3 thì p có 2 dạng là p = 3k + 1 và p = 3k + 2 \(\left(k\inℕ^∗\right)\)
p = 3k+1 thì \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=72k^2+48k+9⋮3\) (loại)
p = 3k+2 thì \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=72k^2+96k+33⋮3\) (loại)
Vậy p = 3