Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý:
Tổng các ước dương của p4p4 là : p4+p3+p2+p+1p4+p3+p2+p+1
Theo đề ra thì: p4+p3+p2+p+1=n2(n∈Np4+p3+p2+p+1=n2(n∈N
Để ý rằng: (2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1(2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1
Đến đây đơn giản rồi nhé !
___
NLT
k nha
Đặt \(p^2+pq+q^2=a^2\) \(\left(a\inℤ\right)\)
\(\Leftrightarrow\left(p+q\right)^2-pq=a^2\)
\(\Leftrightarrow\left(p+q\right)^2-a^2=pq\)
\(\Leftrightarrow\left(p+q-a\right)\left(p+q+a\right)=pq\)
Xong chắc xét các TH với p,q là số nguyên tố
+, Nếu x,y đều khác 3
=> x và y đều ko chia hết cho 3
=> x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2
Mà 3xy chia hết cho 3
=> x^2+3xy+y^2 chia 3 dư 2
=> x^2+3xy+y^2 ko phải số chính phương
=> trong 2 số x,y phải có ít nhất 1 số chia hết cho 3
Gia sử x chia hết cho 3
=> x=3
=> A = x^2+3xy+y^2 = 9+9y+y^2 = y^2+9y+9
Đặt A = k^2 ( k thuộc N )
<=> y^2+9y+9 = k^2
<=> 4y^2+36y+36 = (2k)2
<=> (2y+9)^2 - 45 = (2k)^2
<=> (2y+9)-(2k)^2 = 45
<=> (2y-2k+9).(2y+2k+9) = 45
Đến đó bạn tự làm nha nhưng nhớ kết quả gồm những hoán vị mà bạn tìm đc vì lúc đầu đã giả sử x chia hết cho 3
Tk mk nha