\(\frac{5n-3}{n-1}\)nhận giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

Ta có : 

\(A=\frac{5n-3}{n-1}=\frac{5n-5+2}{n-1}=\frac{5n-5}{n-1}+\frac{2}{n-1}=\frac{5\left(n-1\right)}{n-1}+\frac{2}{n-1}=5+\frac{2}{n-1}\)

Để A là số nguyên thì \(\frac{2}{n-1}\) phải nguyên ( vì 5 đã là số nguyên sẵn ròi ) hay \(2\) chia hết cho \(n-1\)\(\Rightarrow\)\(\left(n-1\right)\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)

Suy ra : 

\(n-1\)\(1\)\(-1\)\(2\)\(-2\)
\(n\)\(2\)\(0\)\(3\)\(-1\)

Vậy để A là số nguyên thì \(n\in\left\{-1;0;2;3\right\}\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Để A=\(\frac{5n-3}{n-1}\) có giá trị nguyên thì 5n-3 chia hết cho n-1

=> \(\frac{5n-3}{n-1}\)=\(\frac{5n-1-2}{n-1}\)

Vì 5n-1 chia hết cho n-1 nên 2 chia hết cho n-1

=> n-1 \(\varepsilon\)Ư(2) { 1:-1:2:-2 }

=> n \(\varepsilon\){ 2:0:3:-3 }

3 tháng 8 2018

Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)

\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)

\(\Leftrightarrow15n+21=5n-15\)

\(\Leftrightarrow15n-5x=-15-21\)

\(\Leftrightarrow10n=-36\)

\(\Leftrightarrow n=-\frac{18}{5}\)

3 tháng 8 2018

\(b,A\inℕ\Rightarrow5n+7⋮n-3\)

\(\Rightarrow5n-15+22⋮n-3\)

\(\Rightarrow5(n-3)+22⋮n-3\)

\(\Rightarrow22⋮n-3\)

\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)

bạn tự vẽ bảng

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

27 tháng 7 2018

a) \(\frac{5n+1}{n+2}\in Z\Leftrightarrow5n+1⋮n+2\)

\(\Rightarrow n+n+n+n+n+1⋮n+2\)

\(\Rightarrow\left(n+2\right)+\left(n+2\right)+\left(n+2\right)+\left(n+2\right)+\left(n+2\right)-9⋮n+2\)

\(\Rightarrow9⋮n+2\)(vì \(n+2⋮n+2\))

\(\Rightarrow n+2\inƯ\left(9\right)\)

\(\Rightarrow n+2\in\left(1;3;9;-1;-3;-9\right)\)

\(\Rightarrow n\in\left(-1;1;7;-3;-5;-11\right)\)

vậy \(n\in\left(-1;1;7;-3;-5;-11\right)\)thì phân số trên có giá trị nguyên

19 tháng 7 2020

a) \(A=\frac{4}{n-3}\)

Để A nguyên => \(\frac{4}{n-3}\)nguyên

=> \(4⋮n-3\)

=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

Vậy n thuộc các giá trị trên 

b) \(B=\frac{2n-1}{n+5}=\frac{2\left(n+5\right)-11}{n+5}=2-\frac{11}{n+5}\)

Để B nguyên => \(\frac{11}{n+5}\)nguyên

=> \(11⋮n+5\)

=> \(n+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n+51-111-11
n-4-66-16

Vậy n thuộc các giá trị trên 

19 tháng 7 2020

a) Để A nguyên thì 4 chia hết cho n-3

nên n thuộc:(4, 2,-1,5,1)

b) ta có B=\(\frac{2n+10-10-1}{n+5}\)=\(\frac{2.\left(n+5\right)-11}{n+5}\)=2-\(\frac{11}{n+5}\)

Để B nguyên =>11 chia hết cho n+5

=> n thuộc (6,-4,-16,-6)

11 tháng 7 2019

Ta có: A = \(\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)

Để A \(\in\)Z <=> 8 \(⋮\)n - 3 <=> n - 3 \(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng : 

n - 3 1 -1 2 -2 4 -4 8 -8
  n 4 2 5 1 7 -1 11 -5

Vậy ...

B = \(\frac{12n-5}{2n-1}=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)

Để B \(\in\)Z <=> 1 \(⋮\)2n - 1 <=> 2n - 1 \(\in\)Ư(1) = {1; -1}

+) 2n - 1 = 1 => 2n = 1 + 1 = 2 => n = 2 : 2 = 1

  2n - 1 = -1 => 2n = -1 + 1 = 0 => n = 0 : 2 = 0

Vậy ...

11 tháng 7 2019

\(A=\frac{5n-7}{n-3}\)Điều kiện : \(n\ne3\)

\(A=\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)

Để \(A\in Z\Rightarrow\frac{8}{n-3}\in Z\Rightarrow n-3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)

Vậy \(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)thì \(A\in Z\)

\(B=\frac{12n-5}{2n-1}\) Điều kiện : \(n\ne\frac{1}{2}\)

\(=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)

Để \(B\in Z\Rightarrow\frac{1}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

Vậy \(\Rightarrow n\in\left\{0;1\right\}\)thì \(B\in Z\)

16 tháng 4 2017

\(\frac{5n-7}{n+2}=\frac{5n+10-10-7}{n+2}=\frac{5n+10-17}{n+2}=\)\(\frac{5n+10}{n+2}+\frac{-17}{n+2}\)

Ư(-17)= {-17;-1;1;17}

\(n+2=-17\)        \(n=-19\)

\(n+2=-1\)          \(n=-3\)

\(n+2=1\)               \(n=-1\)

\(n+2=17\)            \(n=15\)

\(\Rightarrow n=\left(-19;-3;-1;15\right)\)

kết bạn mình nha

9 tháng 3 2018

Ta có : 

\(A=\frac{14}{n+1}+\frac{-3}{n+1}=\frac{14-3}{n+1}=\frac{11}{n+1}\)

Để A là số nguyên thì \(11\) phải chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(11\right)\)

Mà \(Ư\left(11\right)=\left\{1;-1;11;-11\right\}\)

Suy ra : 

\(n+1\)\(1\)\(-1\)\(11\)\(-11\)
\(n\)\(0\)\(-2\)\(10\)\(-12\)

Vậy \(n\in\left\{-12;-2;0;10\right\}\)

Chúc bạn học tốt ~

9 tháng 3 2018

A= \(\frac{14}{n+1}+\frac{-3}{n+1}\)

A= \(\frac{11}{n+1}\)

Để A nhận gt nguyên thì \(11⋮n+1\)

\(\Rightarrow n+1\inƯ_{\left(11\right)}=\left\{\pm1;\pm11\right\}\)

Ta có bảng sau:

n+11-111-11
n0-210-12

 Vậy \(n\in\left\{0;-2;10;-12\right\}\)