Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số nhận giá trị nguyên
=> 8n - 3 chia hết cho 4n + 2
8n + 4 - 4 - 3 chia hết cho 4n + 2
2(4n + 2) - 7 chia hết cho 4n + 2
=> 7 chia hết cho 4n + 2
=> 4n + 2 thuộc Ư(7) = {1 ; -1 ;7 ; -7}
Xét các giá trị trên , ta có bảng sau
4n + 2 | 1 | -1 | 7 | -7 |
n | -1/4 | -3/4 | 5/4 | -9/4 |
Để 8n-3/4n+3 có giá trị là số nguyên thì 8n-3:4n+3
Ta có: 8n-3:4n+3
=>8n+6-9:4n+3
=>2(4n+3)-9:4n+3
Mà 2(4n+3):4n+3
=>9:4n+3
=>4n+3 thuộc Ư(9)=-1;1;-3;3;-9;9
Nếu 4n+3=-1 thì n=-1
Nếu 4n+3=1 thì -0.5(loại)
Nếu 4n+3=-3 thì n=-1.5(loại)
Nếu 4n+3=3 thì n=0
Nếu 4n+3=-9 thì n=-3
Nếu 4n+3=9 thì n=1.5(loại)
Vậy n=-1;-3;0
a)\(A=\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)-5}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}\in Z\)
=>5 chia hết 3n+1
=>3n+1\(\in\){1,-1,5,-5}
=>n\(\in\){0;-2}vì x nguyên
phần kia tương tự
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
Bg
Ta có: B = \(\frac{8n+193}{4n+3}\) (n \(\inℤ\))
Để B là số nguyên thì 8n + 193 \(⋮\)4n + 3
=> 8n + 193 - 2.(4n + 3) \(⋮\)4n + 3
=> 8n + 193 - (8n + 2.3) \(⋮\)4n + 3
=> 8n + 193 - 8n - 6 \(⋮\)4n + 3
=> (8n - 8n) + (193 - 6) \(⋮\)4n + 3
=> 187 \(⋮\)4n + 3
=> 4n + 3 \(\in\)Ư(187)
Ư(187) = {1; -1; 187; -187; 11; -11; 17; -17}
Lập bảng:
4n + 3 = | 1 | -1 | 187 | -187 | 11 | -11 | 17 | -17 |
n = | -1/2 (loại) | -1 | 46 | -95/2 (loại) | 2 | -7/2 (loại) | 7/2 (loại) | -5 |
Mà n \(\inℤ\)
Vậy n = {-1; 46; 2; -5} thì B là số nguyên
a, \(A=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A nguyên => \(\frac{187}{4n+3}\inℤ\)
=> \(4n+3\inƯ\left(187\right)\)
Đến đây bạn tự giải tiếp nha.
\(\frac{8n+193}{4n+3}\Leftrightarrow8n+193⋮4n+3\)
\(\Rightarrow8n+6+187⋮4n+3\)
\(\Rightarrow187⋮4n+3\)
\(\Rightarrow4n+3\inƯ\left(187\right)=\left\{\pm1;\pm187\right\}\)
\(\Rightarrow4n+3=1;-1;187;-187\)
\(\Rightarrow4n=-2;-4;184;-190\)
\(\Rightarrow n=\frac{-2}{4};-1;46;\frac{-190}{4}\)
vì \(n\in Z\)
\(\Rightarrow n=-1;46\)