Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
a: Để A là phân số thì n-3<>0
hay n<>3
b: Để A là số nguyên thì \(n-3+4⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
c: Thay x=-1/2 vào A, ta được:
\(A=\dfrac{-\dfrac{1}{2}+1}{-\dfrac{1}{2}-3}=\dfrac{1}{2}:\dfrac{-7}{2}=-\dfrac{1}{7}\)
a,Với \(n\in Z\)Ta có \(3\in Z;n+2\in Z\)
Do đó để \(A=\frac{3}{n+2}\)là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy với n thuộc Z và n khác -2 thì A là phân số
b;Để A nguyên \(\Leftrightarrow3⋮n+2\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{1;-3;1;-5\right\}\)
Vậy.................................
P/s : thêm đk nữa bn ơi :)
Để biểu thức \(\frac{3}{n-2}\) là phân số khi n - 2 ≠ 0 => n ≠ 2
Để biểu thức \(\frac{3}{n-2}\) là phân số khi n - 2 = 1 hoặc n - 2 = 3 => n = 3 hoặc 5
a) a là phân số <=> n-2 nguyên và n-2 khác Ư(3) <=> n nguyên và n-2 khác (+-1; +-3) <=> n khác (3;1;5;-1)
b) a nguyên <=> n-2 thuộc Ư(3) <=> n-2 thuộc (+-1; +-3) <=> n thuộc (3;1;5;-1)
a/ Theo đề bài,A là phân số <=> n-2 c Z và n-2 khác Ư(3) <=> n c Zvà n - 2 khác +-1;+-3 (nếu n = +-1;+-3 thì A sẽ là số nguyên dương) => n khác 3;1;-1;5
b/ Theo đề bài,A là số nguyên =>n-2 c Ư(3) =>n - 2 c +-1;+-3=> n c 3;1;-1;5