K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

 

 Đặt             \(x^4+mx^3+29x^2+nx+4=\left(x^2+ax+2\right)^2=x^4+a^2x^2+4+2ax^3+4ax^2+4ax\)

       \(=x^4+2ax^3+\left(a^2+4a\right)x^2+4ax+4\)

=>a2 +4a = 29 => a+2 =+- 5 => a =3 hoặc a =-7

=>n =4a = 

=> m =2a  =

7 tháng 8 2015

Để ý hệ số cao nhất là 1, hệ số tự do là 4. Nếu A(x) phân tích được thành nhân tử thì nó có 1 trong 2 dạng sau:

Dạng 1: \(A\left(x\right)=\left(x^2+ax+2\right)^2=x^4+2ax^3+\left(a^2+4\right)x^2+4ax+4\)

Đồng nhất hệ số, ta có: \(2a=2m;\text{ }a^2+4=0;\text{ }4a=-4m\text{ (vô nghiệm)}\)

Dạng 2: \(A\left(x\right)=\left(x^2+ax-2\right)^2=x^4+2ax^3+\left(a^2-4\right)x^2-4ax+4\)

Đồng nhất hệ số: \(2a=2m;\text{ }a^2-4=0;\text{ }-4a=-4m\)

\(\Leftrightarrow a=m;\text{ }\left(a=2\text{ hoặc }a=-2\right)\)

\(\Rightarrow m=2\text{ hoặc }m=-2\)

AH
Akai Haruma
Giáo viên
20 tháng 9 2018

Lời giải:

Vì hệ số bậc cao nhất là $1$ và hệ số tự do là $4$ nên để đa thức đã cho là một số chính phương thì ta có thể viết nó dưới dạng:

\(P(x)=x^4+mx^3+29x^2+nx+4=(x^2+ax+2)^2\)

\(\Leftrightarrow x^4+mx^3+29x^2+nx+4=x^4+a^2x^2+4+2ax^3+4x^2+4ax\)

\(\Leftrightarrow x^4+mx^3+29x^2+nx+4=x^4+2ax^3+x^2(a^2+4)+4ax+4\)

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} m=2a\\ 29=a^2+4\\ n=4a\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=2a\\ a^2=25\rightarrow a=\pm 5\\ n=4a\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} \left\{\begin{matrix} m=10\\ n=20\end{matrix}\right.\\ \left\{\begin{matrix} m=-10\\ n=-20\end{matrix}\right.\end{matrix}\right.\)

27 tháng 9 2018

Giải thích kĩ hơn dùm em tại sao lại có

P(x)=(x^2+ax+2)^2

11 tháng 8 2018

Nếu x≥27 thì T=427(1+473+4a-27)
Do 427 chính phương nên T chính phương khi 1+473+4a-27 chính phương.
Đặt 1+473+4a-27=n2
Có n2> 4a-27 = (2a-27 )2   nên n2≥(2a-27+1)2
Suy ra 1+473+4a-27 ≥ (2a-27+1)2  =  4a-27+2a-26 +1
=>  473  ≥   2 a-26
hay 73.2  ≥  a−26
vậy a  ≤  172
Thay a =172  có  T = 427.(1+2145)2 là số chính phương.
Vậy a lớn nhất bằng 172