![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Không trả lời thì thôi !!! Đừng có mà trả lời lung tung
![](https://rs.olm.vn/images/avt/0.png?1311)
Đạt n2 + 3n + 5 = k2
\(\Rightarrow\)4(n2 + 3n + 5) = 4k2
\(\Rightarrow\)4n2 + 12n + 20 = 4k2
\(\Rightarrow\)(2n)2 + 2.2n.3 + 32 +11 = (2k)2
\(\Rightarrow\)(2n + 3)2 + 11 =(2k)2
\(\Rightarrow\)11 = (2k)2 - (2n + 3)2
\(\Rightarrow\)11 = (2k + 2n + 3)(2k - 2n - 3) . bạn tự giải tiếp nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:
\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\)
=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3
2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)
=> n+2 chia hết cho 3
=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.
Ta thấy
- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2
- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p
Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2
=> p^2 không chia hết cho 2 nên p không chia hết cho 2
=> p^3 không chia hết cho 2
Vậy p^3 +2 là số nguyên tố
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b, +, Nếu p=2 thì : p^2+14 = 18 ko tm
+, Nếu p=3 thì : p^2+14 = 23 tm
+, Nếu p > 3 => p ko chia hết cho 3
=> p^2 chia 3 dư 1 => p^2+14 chia hết cho 3
Mà p^2+14 > 3 => p^2+14 là hợp số
Vậy p = 3
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=n^3-2n^2+2n-4\)
\(=n^2\left(n-2\right)+2\left(n-2\right)\)
\(=\left(n-2\right)\left(n^2+2\right)\)
Để A là sô nguyên tố thì: \(\orbr{\begin{cases}n-2=1\\n^2+2=1\end{cases}}\)
mà \(n^2+2\ge2\)\(\forall n\)
nên \(n-2=1\)\(\Leftrightarrow\)\(n=3\)
Thử lại: \(n=3\)thì \(A=11\)là số nguyên tố
Vậy n = 3