Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
|x-y|+|x+y|=2018^x+1
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.https://www.youtube.com/redirect?q=http%3A%2F%2Fkhogamehack.com%2Fgame-hack%2Fgame-hungry-shark-evolution-hack-full-cho-android%2F&event=video_description&redir_token=grNQna4phcna2n7eily5jiOT7JZ8MTUyNDMxODkwMEAxNTI0MjMyNTAw&v=FRsXISyRHhA&html_redirect=1
a: =>4n+4-2 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
b: \(\Leftrightarrow\left(a+2;b-1\right)\in\left\{\left(1;9\right);\left(9;1\right);\left(-1;-9\right);\left(-9;-1\right);\left(3;3\right);\left(-3;-3\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(-1;10\right);\left(7;2\right);\left(-3;-8\right);\left(-11;0\right);\left(1;4\right);\left(-5;-2\right)\right\}\)
a,
7 ⋮ n + 1 (đk n ≠ - 1)
n + 1 \(\in\) Ư(7) = {-7; - 1; 1; 7}
Lập bảng ta có:
n + 1 | -7 | - 1 | 1 | 7 |
n | -8 | -2 | 0 | 6 |
Theo bảng trên ta có:
n \(\in\) {-8; -2; 0; 6}
b, (2n + 5) ⋮ (n + 1) Đk n ≠ - 1
2n + 2 + 3 ⋮ n + 1
2.(n + 1) + 3 ⋮ n + 1
3 ⋮ n + 1
n + 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
n + 1 | - 3 | -1 | 1 | 3 |
n | -4 | -2 | 0 | 2 |
Theo bảng trên ta có:
n \(\in\) {-4; -2; 0; 2}
\(\Leftrightarrow a\left(b-1\right)=5.1=\left(-5\right)\left(-1\right)\)
\(TH_1:\left\{{}\begin{matrix}a=5\\b-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=2\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}a=1\\b-1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=6\end{matrix}\right.\\ TH_3:\left\{{}\begin{matrix}a=-1\\b-1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-4\end{matrix}\right.\\ TH_4:\left\{{}\begin{matrix}a=-5\\b-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\)
Vậy \(\left(a;b\right)\in\left\{\left(5;2\right);\left(1;6\right);\left(-1;-4\right);\left(-5;0\right)\right\}\)
\(\dfrac{2a^2-b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow\dfrac{\left(2a^2+2b^2\right)-3b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow2-\dfrac{3b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow\dfrac{b^2}{a^2+b^2}=\dfrac{9}{13}\)
\(\Rightarrow1-\dfrac{b^2}{a^2+b^2}=1-\dfrac{9}{13}=\dfrac{4}{13}\)
\(\Leftrightarrow\dfrac{a^2}{a^2+b^2}=\dfrac{4}{13}\)
\(\dfrac{a^2}{b^2}=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{2}{3}\\\dfrac{a}{b}=-\dfrac{2}{3}\end{matrix}\right.\)
đơn giản
ab+2a-(b+2)=1
<=>a(b+2)-(b+2)=1
<=>(a-1)(b+2)=1=1.1=(-1).(-1)
+)(a-1)(b+2)=1.1
=>a-1=1 và b+2=1
=>a=2 và b=-1
+)(a-1)(b+2)=(-1).(-1)
=>a-1=-1 và b+2=-1
=>a=0 và b=-3
Vậy \(\left(a;b\right)\in\left\{\left(0;-3\right);\left(2;-1\right)\right\}\)