Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2 + 3x2 + 4xy + 2x - 2y + 2 = 0
<=> 2(x2 + 2xy + y2) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
<=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> \(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)
M = (x + y)2017 + (x + 2)2018 + (y - 1)2019 = 02017 + (x + 1 + 1)2018 + 02019 = 12018 = 1
a: ĐKXĐ: \(x\notin\left\{-1;-2\right\}\)
b: \(M=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\dfrac{x-1}{x+2}\)
Thay x=2002 vào M, ta được:
\(M=\dfrac{2002-1}{2002+1}=\dfrac{2001}{2003}\)
c: Để M=0 thì x-1=0
hay x=1(nhận)
Sửa đề: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)
=>x=y=1 và z=2
\(A=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}\)
\(=\left(1-1\right)^{2018}+\left(1-1\right)^{2019}+\left(2-1\right)^{2020}\)
=1
\(2x^2+y^2+z^2-2xy-2x+1=0\)
\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+z^2=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)
\(\Leftrightarrow x=y=1;=0\)
\(A=x^{2018}+y^{2019}+z^{2020}=1+1+0=2\)
2)
\(a+b+c=6\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)
\(\Leftrightarrow12+2\left(ab+bc+ac\right)=36\Leftrightarrow ab+bc+ac=12\)
Kết hợp với \(a^2+b^2+c^2=12\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Kết hợp với \(a+b+c=6\Leftrightarrow a=b=c=2\)
\(P=\left(a-3\right)^{2019}+\left(b-3\right)^{2019}+\left(c-3\right)^{2019}=\left(-1\right)^{2019}+\left(-1\right)^{2019}+\left(-1\right)^{2019}=-3\)