\(x.\left(x-y\right)=\frac{3}{10}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

Chúc bạn học tốt!

1 tháng 10 2019

Theo đề bài ta có:

\(\left\{{}\begin{matrix}x.\left(x-y\right)=\frac{3}{10}\\y.\left(x-y\right)=-\frac{3}{50}\left(1\right)\end{matrix}\right.\)

\(\Rightarrow\frac{x\left(x-y\right)}{y\left(x-y\right)}=\frac{x}{y}=\frac{3}{10}:-\frac{3}{50}=-5\)

\(\Rightarrow\frac{x}{y}=-5\Rightarrow x=-5y\left(2\right)\)

Thay (2) vào (1) ta có :

\(y\left(-5y-y\right)=-\frac{3}{50}\)

\(\Rightarrow-6y^2=-\frac{3}{50}\)

\(\Rightarrow y^2=-\frac{3}{50}:-6\)

\(\Rightarrow y^2=\frac{1}{100}\)

\(\Rightarrow y=\sqrt{\frac{1}{100}}\)

\(\Rightarrow y=\frac{1}{10}\)

Ta có : \(x=-5.\frac{1}{10}\)

\(x=-\frac{1}{2}\)

Vậy \(x=-\frac{1}{2};y=\frac{1}{10}\)

13 tháng 11 2016

x+(-31/12)^2=(49/12)^2-x

x+x=(49/12)^2-(-31/12)^2

tính x

từ x tìm ra y

b)x(x-y):[y(x-y)]=3/10:(-3/50)=...

=>x/y=... =>x=...;y=...

10 tháng 6 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow x=3k;y=5k;z=7k\)

\(xy+yz+zx=3k.5k+5k.7k+7k.3k=k^2\left(15+35+21\right)=71k^2;xyz=3k.5k.7k=105k^3\)

Ta có :  \(xyz\left(xz+yz+xy+xz+yz+xy\right)=477120\)

\(\Rightarrow xyz\left(xz+yz+xy\right)=238560\)\(\Rightarrow105k^3.71k^2=238560\Rightarrow k^5=32=2^5\Rightarrow k=2\)

Vậy : x= 6 ; y = 10 ; z = 14

13 tháng 6 2015

b)xy=x:y=>y2=1

=>y=1 hoặc y=-1

*)y=1

=>x+1=x

=>0x=-1(L)

*)y=-1

=>x-1=-x

=>2x=1

=>x=1/2

              Vậy y=-1 x=1/2

c)xy=x:y=>y2=1

=>y=1 hoặc y=-1

*)y=1

=>x-1=x

=>0x=1(L)

*)y=-1

=>x+1=-x

=>2x=-1

=>x=-1/2

Vậy y=-1 x=-1/2

d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9

=>(x+y+z)2=9

=>x+y+z=3 hoặc x+y+z=-3

*)x+y+z=3

=>x=-5:3=-5/3

y=9:3=3

z=5:3=5/3

*)x+y+z=-3

=>x=-5:(-3)=5/3

y=9:(-3)=-3

z=5:(-3)=-5/3

19 tháng 2 2020

Có: x, y , x - y khác 0

=> \(\frac{x\left(x-y\right)}{y\left(x-y\right)}=\frac{\frac{3}{10}}{-\frac{3}{50}}\)

=> \(\frac{x}{y}=\frac{-5}{1}\)=> \(x=-5y\)

=> \(y\left(-5y-y\right)=-\frac{3}{50}\)

=> \(-6y^2=-\frac{3}{50}\)

=> \(y^2=\frac{1}{100}\)=> \(y=\pm\frac{1}{10}\)

+) Với \(y=\frac{1}{10}\)=> x = \(-\frac{1}{2}\)thử lại thỏa mãn

+) Với y = \(-\frac{1}{10}\)=> x \(=\frac{1}{2}\)thử lại thỏa mãn

Kết luận: ...

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)=\frac{15}{2}\)

\(y\left(x+y+z\right)=\frac{-5}{2}\)

\(z\left(x+y+z\right)=20\)

=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)

                                               \(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=\frac{10}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=5+20\)

                                                                     \(\left(x+y+z\right)^2=25\)

=>x+y+z=5 hoặc x+y+x=-5

Với x+y+z=5

=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)

   \(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)

   \(z.5=20\)=>\(z=\frac{20}{5}=4\)

Với x+y+z=-5

=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)

   \(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)

   \(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)

Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\)\(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)

\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)

\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)

Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).

5 tháng 7 2017

b. Áp dụng t/c dãy tỉ số = nhau:

\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=-\frac{7}{3}\)

\(\Rightarrow\frac{x}{2}=-\frac{7}{3}\Leftrightarrow x=-\frac{7}{3}.2=-\frac{14}{3}\)

\(\Rightarrow\frac{y}{5}=-\frac{7}{3}\Leftrightarrow y=-\frac{7}{3}.5=-\frac{35}{3}\)

Vậy \(\hept{\begin{cases}x=-\frac{14}{3}\\y=-\frac{35}{3}\end{cases}}\)

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: \(xyz=192\Leftrightarrow2k.3k.4k=192\)

                             \(\Leftrightarrow24k^3=192\)

                             \(\Leftrightarrow k^3=8\)

                             \(\Leftrightarrow k=2\)                          

\(\Rightarrow x=2.2=4\)  

    \(y=2.3=6\)

   \(z=2.4=8\)

e, Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{2x}{2}=\frac{3z}{9}\)

Áp dụng t/c dãy tỉ số = nhau:

\(\frac{2x}{2}=\frac{y}{2}=\frac{3z}{9}=\frac{2x-y+3z}{2-2+9}=\frac{10}{9}\)

\(\Rightarrow x=\frac{10}{9}\)

\(y=\frac{10}{9}.2=\frac{20}{9}\)

\(z=\frac{10}{9}.3=\frac{10}{3}\)

5 tháng 7 2017

b,\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{7}{-3}.\)

=>x= \(\frac{7}{-3}.2=-4\frac{2}{3}\)

y, \(\frac{7}{-3}.5=-11\frac{2}{3}\)