\(\frac{1}{3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Rightarrow xy.yz.xz=\left(xyz\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow xyz=\frac{1}{5};\frac{-1}{5}\)

xét xyz=-1/5=>x=1/2;y=2/3;z=-3/5

xét xyz=1/5=>x=-1/2;y=-2/3;z=3/5

Vậy (x;y;z)=(1/2;2/3;-3/5);(-1/2;-2/3;3/5)

 

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

20 tháng 2 2019

easy lắm 

Công vế theo vế ta được : x+y+y+z+x+z=\(\frac{-7}{6}\)+\(\frac{1}{4}\)+\(\frac{1}{12}\)=\(\frac{-5}{6}\)

Suy ra 2.(x+y+z)=\(\frac{-5}{6}\) suy ra x+y+z=\(\frac{-5}{12}\)

suy ra x+y=\(\frac{-5}{12}\)-z ; y+z=\(\frac{-5}{12}\)-x ; x+z=\(\frac{-5}{12}\)-y

Thay vào ta có : \(\frac{-5}{12}\)-z=\(\frac{-7}{6}\) suy ra z= \(\frac{3}{4}\)

                          \(\frac{-5}{12}\)-x=\(\frac{1}{4}\) suy ra x=\(\frac{-2}{3}\)

                            \(\frac{-5}{12}\)-y=\(\frac{1}{12}\) suy ra y=\(\frac{-1}{2}\)

easy Hok tốt nhé b

15 tháng 7 2016

x^2 * y^2 * z^2 = (xyz)^2 = [1/3 * (-2/5) * (-3/10)]^2  = (1/25)^2 

=> xyz = 1/25

=> z= xyz : xy = 1/25 : 1/3 = 3/25

=> x = xyz : yz = 1/25 : (-2/5) = -1/10

=> y = xyz : xz = 1/25 : (-3/10) = -2/15

1 tháng 7 2018

Ta có : 

\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}\)

\(\Leftrightarrow\)\(x^2y^2z^2=\frac{3}{75}\)

\(\Leftrightarrow\)\(x^2y^2z^2=\frac{9}{225}\)

\(\Leftrightarrow\)\(\left(xyz\right)^2=\left(\frac{3}{15}\right)^2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}xyz=\frac{3}{15}\\xyz=\frac{-3}{15}\end{cases}}\)

* Nếu \(xyz=\frac{3}{15}\)

\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\\y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\\z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\end{cases}}\)

Vậy \(x=\frac{-3}{2}\)\(;\)\(y=-2\) và \(z=\frac{9}{5}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

Bạn êi tại olm bị lỗi chỗ \(\hept{\begin{cases}\\\\\end{cases}}\) nên mình trình bày lại nhá bạn 

\(x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\)

\(y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\)

\(z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\)

Vậy ... 

Chúc bạn học tốt ~ 

2 tháng 9 2016

Chào em, em hãy xem lời giải dưới đây nhé!

Lời giải:

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

bz−cy/a=cx−az/b=ay−bx/c=abz−acy/a2=bcx−abz/b2=acy−bcx/c2

=abz−acy+bcx−abz+acy−bcx/a2+b2+c2   =0               (*)

Từ (*) suy ra bz−cy/a=0 nên bz−cy=0⇒bz=cy. Hay b/y=c/z     (1)

Từ (*) suy ra cx−az/b=0 nên cx−az=0⇒cx=az. Hay c/z=a/x     (2)

Từ (1) và (2) ta suy ra a/x=b/y=c/z.
b) 

Có : x/z+y+1=y/x+z+1=z/x+y−2=x+y+z/2(x+y+z)=x+y+z=1/2

Từ đó, ta có : z/x+y−2=1/2⇒2z = x+y−2⇒2z+2=x+y

Lại có : x+y+z=1/2⇔2z+2+z=1/2⇔3z=1/2−2=−3/2⇔z=−1/2

Từ đó tìm đc x, y

19 tháng 10 2018

a, \(\frac{x}{5}=\frac{y}{7}\)và x - y = -200

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-200}{-2}=100\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=100\\\frac{y}{7}=100\end{cases}\Rightarrow\hept{\begin{cases}x=500\\y=700\end{cases}}}\)

  Vậy \(\hept{\begin{cases}x=500\\y=700\end{cases}}\)

b, \(\frac{x}{4}=\frac{y}{5}\)và x.y = 20

     \(\frac{x}{4}=\frac{y}{5}\)

\(\Leftrightarrow\frac{x^2}{16}=\frac{xy}{20}=\frac{y^2}{25}\)

\(\Leftrightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{20}{20}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x^2}{16}=1\\\frac{y^2}{25}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=16\\y^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm4\\y=\pm5\end{cases}}\)

Vậy \(\left(x,y\right)\in\left\{\left(-4,-5\right);\left(4,5\right)\right\}\)

c, \(\frac{x}{2}=\frac{y}{3}\)và 4x - 3y = -2

   \(\frac{x}{2}=\frac{y}{3}\)

\(\Leftrightarrow\frac{4x}{8}=\frac{3y}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{4x}{8}=2\\\frac{3y}{9}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=16\\3y=18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)

Vậy \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)