K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

12 , mk chỉ tìm đk số này thôi

22 tháng 8 2018

12 88 và 38 nhé

1 tháng 1 2016

Đặt tên cho số đó là ...mn đi

Bình phương của mn là ( mn)^2 . Lập phương tổng các chữ số là : ( m+n) ^3

=> (mn)^2 = (m+n)^3

=> mn phải là lập phương của 1 số [ vì bằng (m+n) ^ 3 mà] và ngược lại m+n sẽ là bình phương của 1 số 

Từ đó mn thuộc { 27 ; 64} => thử đi, ta sẽ được mn = 27

Đó chỉ là 1 cách làm của tui thui nha, hông chắc là đúng đâu. Dù gì nhớ tick tui nha

1 tháng 1 2016

27 

Tick nha

10 tháng 2 2021

Gọi chữ số hàng chục của số cần tìm là a; chữ số hàng đơn vị của số cần tìm là b (a, b \(\in\) N; 0 < a,b \(\le\) 9)

Số cần tìm là \(\overline{ab}=10a+b\)

Vì tổng bình phương của hai chữ số của nó bằng 89 nên ta có pt:

a2 + b2 = 89 (1)

Số sau khi đổi chỗ hai chữ số của số cần tìm là: \(\overline{ba}=10b+a\)

Vì nếu đổi chỗ hai chữ số của nó thì được một số nhỏ hơn số ban đầu là 27 đơn vị nên ta có pt:

\(\left(10a+b\right)-\left(10b+a\right)=27\) 

\(\Leftrightarrow\) 9a - 9b = 27

\(\Leftrightarrow\) a - b = 3 (2)

Từ (1) và (2) ta có hpt:

\(\left\{{}\begin{matrix}a^2+b^2=89\\a-b=3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a^2+b^2=89\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(3+b\right)^2+b^2=89\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}9+6b+2b^2=89\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b\left(3+b\right)=40\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=8\\b=5\end{matrix}\right.\) (TM)

Vậy số cần tìm là 85

Chúc bn học tốt!

Gọi số cần tìm có dạng là \(ab\)(có dấu gạch ngang trên đầu)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0\le a< 10\end{matrix}\right.\))

Vì tổng bình phương hai chữ số bằng 89 nên ta có phương trình:

\(a^2+b^2=89\)(1)

Vì khi đổi chỗ hai chữ số của nó thì được một số nhỏ hơn số ban đầu 27 đơn vị nên ta có phương trình:

\(10b+a+27=10a+b\)

\(\Leftrightarrow10b+a-10a-b=-27\)

\(\Leftrightarrow-9a+9b=-27\)

\(\Leftrightarrow-9\left(a-b\right)=-9\cdot3\)

\(\Leftrightarrow a-b=3\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a^2+b^2=89\\a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(b+3\right)^2+b^2=89\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2+6b+9+b^2=89\\a=3+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b^2+6b-80=0\\a=b+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2+3b-40=0\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+8b-5b-40=0\\a=b+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b\left(b+8\right)-5\left(b+8\right)=0\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(b+8\right)\left(b-5\right)=0\\a=b+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b+8=0\\b-5=0\end{matrix}\right.\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=-8\left(loại\right)\\b=5\left(nhận\right)\end{matrix}\right.\\a=b+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5+3\\b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\left(nhận\right)\\b=5\left(nhận\right)\end{matrix}\right.\)

Vậy: Số cần tìm là 85

Gọi số cần tìm là ab

Theo đề, ta có: a-b=7 và 10a+b=(a+b)^2

=>a=7+b và 10(b+7)+b=(2b+7)^2

=>4b^2+28b+49-11b-70=0 và a=b+7

=>b=1 và a=8