K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
23 tháng 10 2021

\(a^2+b^2+c^2+ab+bc+ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2=0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\Leftrightarrow a=b=c=0\)

8 tháng 7 2021

Help me plskhocroi

 

NV
22 tháng 3 2021

Đề đúng không em nhỉ?

Đề bài thế này vẫn tính được a;b;c, nhưng số rất xấu (căn thức, lớp 7 chưa học)

Biểu thức thứ hai: \(b+bc+c=5\) phải là \(b+bc+c=8\) hoặc 3; 15; 24; 35; 48... gì đó mới hợp lý, nghĩa là cộng thêm 1 phải là 1 số chính phương

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow \frac{abc}{c(a+b)}=\frac{abc}{a(b+c)}=\frac{bca}{b(c+a)}\)

\(\Leftrightarrow c(a+b)=a(b+c)=b(c+a)\)

\(\Leftrightarrow ac+bc=ab+ac=bc+ab\Leftrightarrow ab=bc=ac\)

\(\Rightarrow a=b=c\) (do $a,b,c>0$)

$\Rightarrow M=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1$

30 tháng 12 2016

khó thế

7 tháng 1 2018

sai de roi

24 tháng 2 2022

Giải:

Vì a∈Z+

⇒5b=a3+3a2+5>a+3=5c

⇒5b>5c⇒b>c

⇒5b⋮5c

⇒a3+3a2+5⋮a+3

⇒a2(a+3)+5⋮a+3

Mà a2(a+3)⋮a+3

⇒5⋮a+3

⇒a+3∈Ư(5)

⇒a+3∈{±1;±5}(1)

Do a∈Z+⇒a+3≥4(2)

Từ (1) và (2)

⇒a+3=5

⇒a=5−3

⇒a=2(∗)

Thay (∗) vào biểu thức ta có:

23+3.22+5=5b⇔b=2

2+3=5c⇔c=1

Vậy: