K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Violympic toán 8

1 tháng 1 2020

Tham khảo nhé bạn:

Violympic toán 8

Chúc bạn học tốt!

1 tháng 1 2020

tks nha

20 tháng 12 2019

Ai giúp mik vs

16 tháng 8 2016

a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\)                               ĐKXĐ : x #0, x#2, x#-2

<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)

<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)

=> 10 - 2x + 7x - 14 = 4x - 4 + x

<=>-2x + 7x - 4x + x  = -4 - 10 + 14

<=>x=-14

24 tháng 12 2016

Có: \(\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A\left(x^2+1\right)+\left(Bx+C\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+1\right)}=\frac{Ax^{2\: }+A+Bx^2-Bx+Cx-C}{\left(x-1\right)\left(x^2+1\right)}=\frac{\left(A+B\right)x^2+\left(C-B\right)x+\left(A-C\right)}{\left(x-1\right)\left(x^2+1\right)}\)

Đồng nhất với phân thức \(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}\)

Ta được: \(\begin{cases}A+B=1\\C-B=2\\A-C=-1\end{cases}\)\(\Leftrightarrow\begin{cases}A=1-B\\C-B=2\\1-B-C=-1\end{cases}\)

\(\Leftrightarrow\begin{cases}A=1-B\\C-B=2\\B+C=2\end{cases}\)\(\Leftrightarrow\begin{cases}A=1-B\\B=0\\C=2\end{cases}\)\(\Leftrightarrow\begin{cases}A=1\\B=0\\C=2\end{cases}\)

24 tháng 12 2016

\(VP=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A\left(x^2+1\right)}{\left(x-1\right)\left(x^2+1\right)}+\frac{\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\frac{A\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}\)\(=\frac{Ax^2+A+Bx^2-Bx+Cx-C}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\frac{A\left(x^2+1\right)+Bx\left(x-1\right)+C\left(x-1\right)}{\left(x-1\right)\left(x^2+1\right)}\)\(=\frac{A\left(x^2+1\right)+\left(Bx+C\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\frac{Ax^2+A+Bx+C}{x^2+1}\). Lại có: \(VT=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}=\frac{x-1}{x^2+1}\)

\(\Leftrightarrow\frac{Ax^2+A+Bx+C}{x^2+1}=\frac{x-1}{x^2+1}\Leftrightarrow Ax^2+A+Bx+C=x-1\)

thôi cạn ý tưởng lm tiếp t đi chơi