\(\in\)Z biết : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tham khảo link này:

https://olm.vn/hoi-dap/detail/58559568033.html

Chúc bạn học tốt

Forever 

26 tháng 2 2020

cảm ơn bn nha!!!

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

7 tháng 2 2017

Ta có : \(\frac{a}{2}=\frac{b}{3}-->\frac{a}{8}=\frac{b}{12}-->\frac{a^3}{512}=\frac{b^3}{1728}\)

\(\frac{b}{4}=\frac{c}{9}-->\frac{b}{12}=\frac{c}{27}-->\frac{b^3}{1728}=\frac{c^3}{19683}\)\(\left\{\frac{a^3}{512}=\frac{b^3}{1728}=\frac{c^3}{19683}}\)

7 tháng 2 2017

đề có bị nhầm không vậy bạn?hum

13 tháng 11 2016

a) Đặt A=\(\frac{x^2-1}{x^2}\)

Ta có:

\(\Rightarrow A=\frac{x^2}{x^2}-\frac{1}{x^2}\)

\(\Rightarrow A=1-\frac{1}{x^2}\)

\(\Rightarrow x\in Z\) để thỏa mãn A<0

 

 

17 tháng 11 2016

b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

=>(a^2+b^2)*cd=(c^2+d^2)*ab

a^2cd+b^2cd=abc^c+abd^2

a^2cd+b^2cd-c^2ab-d^2ab=0

(a^2cd-abd^2+(b^2cd-abc^2)=0

ad(ac-bd)-bc(ac-bd)=0

(ad-bc)(ac-bd)=0

=>ad-bc=0 hoặc ac-bd=0

ad=bc ac=bd

=>a/b=c/d hoặc a/d=b/c

 

9 tháng 11 2016

1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm

3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)

=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2

4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)

9 tháng 11 2016

câu 3,4 bạn làm tỉ lệ thức là xong

5 tháng 11 2019

a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :  \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)

Từ \(\frac{x}{3}=10=>x=30\)

Từ \(\frac{y}{4}=10=>y=40\)

Từ \(\frac{z}{5}=10=>z=50\)

Vậy x=30,y=40,z=50

b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)

Đpcm

5 tháng 11 2019

a)Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}\)\(\frac{y}{4}\)\(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20

-> \(\frac{x}{3}\)= 20 ->x=20*3=60

\(\frac{y}{4}\)=20->y=20*4=80

\(\frac{z}{5}\)=20->z=20*5=100

Vậy x=60, y=80, z=100.

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)

Do đó: x=15; y=12; z=9

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)

Do đó: a=5/2; b=2; c=7/2

e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)

Do đó: a=40/9; b=50/9; c=20/9

f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)

Do đó: a=-8; b=-12; c=-16

Bài 1: Tìm số hạng thứ 4 lập thành 1 tỉ lệ thức (TLT) với 3 số hạng sau: 4;25;100 Bài 2: Cho TLT \(\frac{3x+5y}{x-2y}=\frac{1}{4}.\)Tính tỉ số \(\frac{x}{y}\)  Bài 3: Cho TLT \(\frac{a-3}{a+3}=\frac{b-6}{b+6}\)   với a \(\ne\) 3; b  \(\ne\)–6. CMR: \(\frac{a}{b}=\frac{1}{2}\)Bài 4: Các số a,b,c phải có thêm điều kiện gì để có TLT:  \(\frac{a}{b}=\frac{a+c}{b+c}\)với b \(\ne\)0; b + c \(\ne\)0.Bài 5: Cho...
Đọc tiếp

Bài 1: Tìm số hạng thứ 4 lập thành 1 tỉ lệ thức (TLT) với 3 số hạng sau: 4;25;100 

Bài 2: Cho TLT \(\frac{3x+5y}{x-2y}=\frac{1}{4}.\)Tính tỉ số \(\frac{x}{y}\)  

Bài 3: Cho TLT \(\frac{a-3}{a+3}=\frac{b-6}{b+6}\)   với a \(\ne\) 3; b  \(\ne\)–6. CMR: \(\frac{a}{b}=\frac{1}{2}\)

Bài 4: Các số a,b,c phải có thêm điều kiện gì để có TLT: 

 \(\frac{a}{b}=\frac{a+c}{b+c}\)với b \(\ne\)0; b + c \(\ne\)0.

Bài 5: Cho TLT \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)  với a,b,c \(\ne\)0; a \(\ne\)c. CMR: \(\frac{ab}{bc}=\frac{b}{c}\)

Bài 6: Tìm các số x,y,z biết:

a, \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\)   và x + y - 10z = – 102

b, 9x = 5y = 15z và –x + y - z = 11

c, \(\frac{3}{7}x=\frac{8}{13}y=\frac{6}{19}z\) và 2x - y - z = – 6

Bài 8: Cho TLT . Chứng minh:

a, \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)            b, \(\frac{a-b}{c-d}=\frac{2a-3b}{2c-3d}\)                     c, \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

2
11 tháng 10 2018

2. \(\frac{\left(3X+5Y\right)}{X-2Y}=\frac{1}{4}=>4\left(3X+5Y\right)=X-2Y\\ 12X+20Y=X-2Y\\ X-12X=2Y-20Y\\ -11X=-18Y\\ =>\frac{X}{Y}=-\frac{18}{-11}=\frac{18}{11}\)

11 tháng 10 2018

Bài 1. 4/25 = 100/x => x = 25.100/4 = 2500/4 = 625

Bài 3. (a-3)/(a+3) = (b-6)/(b+6)

=> (a-3)(b+6) = (a+3)(b-6)

=> ab + 6a -3b -18 = ab - 6a + 3b -18

=> 12a = 6b

=> a/b = 6/12 = 1/2