Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a+1/b=2/99.
Mà 2/99=2/(9*11).
Theo tính chất :a/n*(n+a)=1/n-1/(n+a).
2/(9*11)=1/9-1/11.
Mà a và b là 2 stn liên tiếp.
=>a=9;b=11.
Vậy a=9;b=11.
Ta có 2 số lẻ liên tiếp a-b=2 ( 1 ) Mà \(\frac{1}{a}-\frac{1}{b}=\frac{2}{99}\) \(\Rightarrow\frac{b}{ab}-\frac{a}{ab}=\frac{2}{99}\) \(\Rightarrow\frac{b-a}{ab}=\frac{2}{99}\) (2) Thay (1) và (2) ta có \(\frac{2}{ab}=\frac{2}{99}\Rightarrow a\cdot b=99=9\cdot11=3.33=1.99\) Vì a và b là 2 số lẻ liên tiếp suy ra a=9;b=11
\(P=4a+3b+\frac{c^3}{\left(a-b\right)b}\)
\(=\left[\left(a-b\right)+b+\frac{c^3}{\left(a-b\right)b}\right]+3b+3a\)
\(\ge3c+3b+3a=3\left(a+b+c\right)=12\)
Dấu "=" xảy ra tại \(a=2;b=1;c=1\)
Bài 1
\(a,\frac{3}{5}+\left(-\frac{1}{4}\right)=\frac{7}{20}\)
\(b,\left(-\frac{5}{18}\right)\cdot\left(-\frac{9}{10}\right)=\frac{1}{4}\)
\(c,4\frac{3}{5}:\frac{2}{5}=\frac{23}{5}\cdot\frac{5}{2}=\frac{23}{2}\)
Bài 2
\(a,\frac{12}{x}=\frac{3}{4}\Rightarrow3x=12\cdot4\)
\(\Rightarrow3x=48\)
\(\Rightarrow x=16\)
\(b,x:\left(-\frac{1}{3}\right)^3=\left(-\frac{1}{3}\right)^2\)
\(\Rightarrow x=\left(-\frac{1}{3}\right)^2\cdot\left(-\frac{1}{3}\right)^3=\left(-\frac{1}{3}\right)^5\)
\(\Rightarrow x=-\frac{1}{243}\)
\(c,-\frac{11}{12}\cdot x+0,25=\frac{5}{6}\)
\(\Rightarrow-\frac{11}{12}x=\frac{5}{6}-\frac{1}{4}=\frac{7}{12}\)
\(\Rightarrow x=\frac{7}{12}:\left(-\frac{11}{12}\right)\)
\(\Rightarrow x=-\frac{7}{11}\)
\(d,\left(x-1\right)^5=-32\)
\(\left(x-1\right)^5=-2^5\)
\(x-1=-2\)
\(x=-2+1=-1\)
Bài 3
\(\left|m\right|=-3\Rightarrow m\in\varnothing\)
Bài 3
Gọi 3 cạnh của tam giác lần lượt là a;b;c ( a,b,c>0)
Ta có
\(a+b+c=13,2\)
\(\frac{a}{3};\frac{b}{4};\frac{c}{5}\)
Ap dụng tính chất DTSBN ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{13,2}{12}=\frac{11}{10}\)
\(\hept{\begin{cases}\frac{a}{3}=\frac{11}{10}\\\frac{b}{4}=\frac{11}{10}\\\frac{c}{5}=\frac{11}{10}\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{33}{10}\\b=\frac{44}{10}=\frac{22}{5}\\c=\frac{55}{10}=\frac{11}{2}\end{cases}}\)
Vậy 3 cạnh của tam giác lần lượt là \(\frac{33}{10};\frac{22}{5};\frac{11}{2}\)
a)\(\frac{3}{5}+\left(-\frac{1}{4}\right)\)
\(=\frac{3}{5}-\frac{1}{4}\)
\(=\frac{12}{20}-\frac{5}{20}=\frac{7}{20}\)
b)\(\left(-\frac{5}{18}\right)\left(-\frac{9}{10}\right)\)
\(=\frac{\left(-5\right)\left(-9\right)}{18.10}\)
\(=\frac{\left(-1\right)\left(-1\right)}{2.2}=\frac{1}{4}\)
c)\(4\frac{3}{5}:\frac{2}{5}\)
\(=\frac{23}{5}:\frac{2}{5}\)
\(=\frac{23}{5}.\frac{5}{2}\)
\(=\frac{23.1}{1.2}=\frac{23}{2}\)
1/
a)\(\frac{12}{x}=\frac{3}{4}\)
\(\Rightarrow x.3=12.4\)
\(\Rightarrow x.3=48\)
\(\Rightarrow x=48:3=16\)
b)\(x:\left(\frac{-1}{3}\right)^3=\left(\frac{-1}{3}\right)^2\)
\(x=\left(\frac{-1}{3}\right)^2.\left(\frac{-1}{3}\right)^3\)
\(x=\frac{\left(-1\right)^2}{3^2}.\frac{\left(-1\right)^3}{3^3}\)
\(x=\frac{1}{9}.\frac{-1}{27}=-\frac{1}{243}\)
Đặt 12a4b1996 =N
\(N⋮63\Rightarrow N⋮9\)và \(N⋮7\)
\(N=120401996+1000000a+10000b⋮7\Rightarrow\left(a+4b+1\right)⋮7\)
+ Nếu \(a+b=4\Rightarrow\left(4+3b+1\right)⋮7\Rightarrow3b⋮7\Rightarrow b⋮7\Rightarrow b\in\left(0,7\right)\Rightarrow b=7;a=6\)
chia hết cho 63 là chia hết cho 3 va 2 và 9.Vậy số a là 0 ;b=4 ;a là 1 b là 3;....