Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: a,b thuộc Q
Ta có: a/b = ab => ab/b^2 = ab => b^2 = 1 => b = 1 hoặc -1
Với b = 1, a + b = a.b => a + 1 = a (vô lí)
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = 1/2 (thỏa Đk)
Vậy cặp số hữu tỉ cần tìm là 1/2 và -1
mình lộn
a) So sánh MO, MA, MB, MC
b) So sánh các góc OMA, AMB, BMC
Nói rõ được không ạ? Tại mình làm đưuọc rồi nhưng có điều lo sai thôi
tiep nha
suy ra a^2(a+3)+5 chia het cho a+3
suy ra 5 chia het cho a+3
suy ra a+3 thuoc uoc cua 5 ma a>0
suy ra a+3=5
suy ra a=2
thay vao de bai tinh duoc b=2;c=1
vi a,b,c >0 suy ra a^3+3a^2+5>a+3
suy ra 5^b > 5^c
suy ra 5^b chia het cho 5^c
suy ra a^3+3a^2+5 chia het cho a+3
a, Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k,y=4k,z=3k\)
Ta có: \(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4k}{6k}=\frac{2}{3}\)
b, \(Q+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(Q+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(Q+3=2015\cdot\frac{1}{5}=403\)
=>Q=403-3=400
a,\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4}{6}=\frac{2}{3}\)
b, \(Q=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow Q+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)
\(\Rightarrow Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(\Rightarrow Q+3=\frac{a+b+c}{b+c+c+a+a+b}=\frac{2015}{5}=403\)
\(\Rightarrow Q=400\)
Vậy Q = 400
a + b = |a| - |b|
=> a+ b + |b| = |a|
+) Nếu a> 0 => |a| = a => a +b + |b| = a => b + |b| = 0 => |b| = - b => b < 0 .Vậy a> 0 và b < 0 thỏa mãn
+) Nếu a = < 0 => |a| = - a
Xét b < 0 => |b| = - b . Khi đó: a + b - b = - a => a = - a => a = 0 . vậy a = 0 và b < 0 thỏa mãn
xét b > 0 => |b| = b . Khi đó: a + b + b = - a => 2b = - 2a => a +b = 0 . vậy a; b là số đối nhau
KL: các cặp số (a; b) mà a; b đối nhau hoặc (0;b) với b < 0 hoặc (a;b) mà a > 0 và b < 0 thỏa mãn yêu cầu