Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/2=b/3=c/4=k
=>a=2k; b=3k; c=4k
Ta có: \(a^2+3b^2-2c^2=-16\)
\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)
\(\Leftrightarrow k^2=16\)
Trường hợp 1: k=4
=>a=8; b=12; c=16
Trường hợp 2: k=-4
=>a=-8; b=-12; c=-16
Câu 5:
a: Hệ số tỉ lệ k của y đối với x là:
\(k=\dfrac{y}{x}=\dfrac{3}{-6}=-\dfrac{1}{2}\)
b: \(\dfrac{y}{x}=-\dfrac{1}{2}\)
=>\(y=-\dfrac{1}{2}x\)
=>\(x=\dfrac{\left(-2\right)\cdot y}{1}=-2y\)
c: Khi x=1/2 thì \(y=-\dfrac{1}{2}\cdot\dfrac{1}{2}=-\dfrac{1}{4}\)
d: Khi y=-8 thì \(x=\left(-2\right)\cdot\left(-8\right)=16\)
Câu 3:
Gọi số học sinh của hai lớp 7A và 7B lần lượt là a(bạn) và b(bạn)
(Điều kiện: \(a,b\in Z^+\))
Lớp 7A có ít hơn lớp 7B là 5 bạn nên b-a=5
Số học sinh của lớp 7A và lớp 7B lần lượt tỉ lệ với 8 và 9 nên ta có
\(\dfrac{a}{8}=\dfrac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{9}=\dfrac{b-a}{9-8}=\dfrac{5}{1}=5\)
=>\(a=5\cdot8=40;b=5\cdot9=45\)
Vậy: Lớp 7A có 40 bạn; lớp 7B có 45 bạn
Câu 4:
Gọi khối lượng giấy vụn lớp 6a,6b,6c quyên góp được lần lượt là a(kg),b(kg),c(kg)
(Điều kiện: a>0;b>0;c>0)
Vì khối lượng giấy vụn mà ba lớp 6a,6b,6c quyên góp được lần lượt tỉ lệ với 9;7;8 nên \(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}\)
Tổng khối lượng giấy vụn ba lớp quyên góp được là 120kg nên a+b+c=120
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{a+b+c}{9+7+8}=\dfrac{120}{24}=5\)
=>\(a=5\cdot9=45;b=5\cdot7=35;c=8\cdot5=40\)
Vậy: Lớp 6a quyên góp được 45kg; lớp 6b quyên góp được 35kg; lớp 6c quyên góp được 40kg
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)
\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)
Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)
nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)
mà a+b+c=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)
Vậy: \(a=\dfrac{16}{35}\); \(b=\dfrac{24}{35}\); \(c=\dfrac{6}{7}\)
b) Ta có: 2a=3b=5c
nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)
mà a+b-c=3
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)
Do đó:
\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)
Vậy: \(a=\dfrac{45}{19}\); \(b=\dfrac{30}{19}\); \(c=\dfrac{18}{19}\)
tham khảo!!
https://lazi.vn/edu/exercise/tim-cac-so-a-b-c-biet-rang-a-2-b-3-c-4-va-a-2-b-2-2c-2-108
Giải:
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\left\{\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\)
Ta có: \(a^2+3b^2-2c^2=\left(-16\right)\)
\(\Rightarrow4k^2+27k^2-32k^2=-16\)
\(\Rightarrow\left(-1\right)k^2=-16\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\pm4\)
+) \(k=4\Rightarrow a=8;b=12;c=16\)
+) \(k=-4\Rightarrow a=-8;b=-12;c=-16\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(8;12;16\right);\left(-8;-12;-16\right)\)
Bạn có làm trong này rồi nhé Câu hỏi của Phạm Vũ Ngọc Duy
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\\ \Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\\ =\dfrac{a^2+3b^2-2c^2}{4+27-32}=-\dfrac{16}{-1}=16\\ \Rightarrow a=\pm8;b=\pm12;c=\pm16\)
Giải:
Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\)
Ta có: \(a^2+3b^2-2c^2=-16\)
\(\Rightarrow4k^2+27k^2-32k^2=-16\)
\(\Rightarrow-k^2=-16\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\pm4\)
+) \(k=4\Rightarrow a=8,b=12,c=16\)
+) \(k=-4\Rightarrow a=-8;b=-12;c=-16\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(8;12;16\right);\left(-8;-12;-16\right)\)
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a^2}{4}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=\dfrac{-16}{-1}=16\)
\(\Rightarrow a^2=64,b^2=144,c^2=256\) hay:
\(\left(a;b;c\right)=\left(8;12;16\right)=\left(-8;-12;-16\right)\)
ĐS: \(\left(a;b;c\right)=\left(8;12;16\right)=\left(-8;-12;-16\right)\)
a)
Theo đề ra, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và \(a^2+3b^2-2c^2=-16\)
\(\Rightarrow\dfrac{a^2}{2^2}=\dfrac{3b^2}{3.3^2}=\dfrac{2c^2}{2.4^2}\)
Hay \(\Rightarrow\dfrac{a^2}{4}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a^2}{4}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=-\dfrac{16}{-1}=16\)
\(\Rightarrow\dfrac{a^2}{4}=16\Rightarrow a^2=4.16=64\Rightarrow a=\sqrt{64}=\left\{-8;8\right\}\)
\(\Rightarrow\dfrac{3b^2}{27}=16\Rightarrow b^2=\dfrac{27.16}{3}=144\Rightarrow b=\sqrt{144}=\left\{-12;12\right\}\)
\(\Rightarrow\dfrac{2c^2}{32}=16\Rightarrow c^2=\dfrac{32.16}{2}=256\Rightarrow c=\sqrt{256}=\left\{-16;16\right\}\)
Vậy ...
b)
Theo đề ra, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và \(a^3+b^3+c^3=792\)
\(\Rightarrow\dfrac{a^3}{2^3}=\dfrac{b^3}{3^3}=\dfrac{c^3}{4^3}\)
Hay \(\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}=\dfrac{a^3+b^3+c^3}{8+27+64}=\dfrac{792}{99}=8\)
\(\Rightarrow\dfrac{a^3}{8}=8\Rightarrow a^3=8.8=64\Rightarrow a=4\)
\(\Rightarrow\dfrac{b^3}{27}=8\Rightarrow b^3=8.27=216\Rightarrow b=6\)
\(\Rightarrow\dfrac{c^3}{64}=8\Rightarrow c^3=8.64=512\Rightarrow c=8\)
Vậy...
Chúc bạn học tốt!