Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}=k$
$\Rightarrow a=2k+1, b=4k-3, c=6k+5$.
Khi đó:
$5a-3b-4c=50$
$\Rightarrow 5(2k+1)-3(4k-3)-4(6k+5)=50$
$\Rightarrow -26k=56\Rightarrow k=\frac{-28}{13}$
Suy ra:
$a=2k+1=2.\frac{-28}{13}+1=\frac{-43}{13}$
$b=4k-3=4.\frac{-28}{13}-3=\frac{-151}{13}$
$c=6k+5=6.\frac{-28}{13}+5=\frac{-103}{13}$
\(5a=8b=3c\)
\(\Rightarrow\dfrac{5a}{120}=\dfrac{8}{120}=\dfrac{3c}{120}\)
\(\Rightarrow\dfrac{a}{24}=\dfrac{b}{15}=\dfrac{c}{40}=\dfrac{3b}{45}=\dfrac{a-3b+c}{24-45+40}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.24=48\\b=2.15=30\\c=2.40=80\end{matrix}\right.\)
Ta có: 5a=8b=3c
nên \(\dfrac{a}{\dfrac{1}{5}}=\dfrac{b}{\dfrac{1}{8}}=\dfrac{c}{\dfrac{1}{3}}\)
hay \(\dfrac{a}{\dfrac{1}{5}}=\dfrac{3b}{\dfrac{3}{8}}=\dfrac{c}{\dfrac{1}{3}}\)
mà a-3b+c=38
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{5}}=\dfrac{3b}{\dfrac{3}{8}}=\dfrac{c}{\dfrac{1}{3}}=\dfrac{a-3b+c}{\dfrac{1}{5}-\dfrac{3}{8}+\dfrac{1}{3}}=\dfrac{38}{\dfrac{19}{120}}=240\)
Do đó: a=48; b=30; c=80
1,
Từ đề bài => a/c * c/b = (a/c)^2=(c/b)^2
=> a/b=a^2/c^2=c^2/b^2=a^2+c^2/c^2+b^2=> a/b=a^2+c^2/c^2+b^2
=> DPCM
(từ mình làm tiếp)
Bài này mink làm trc
2,
Đặt a/b=c/d=k
=> a=kb, c=kd
Ta có:
5a+3b/5a-3b=5kb+3b/5kb-3b
=3b*(2k+1)/3b*(2k-2)=2k+1/2k-1
Chứng minh tương tự với biểu thức 5c+3d/5c-3d
Ta cũng đc 2k+1/2k-1
=> Nếu a/b=c/d thì 5a+3b/5a-3b=5c+3d/5a-3d
=> dpcm
a.S=1+52+54+...+5200
=>25S=52+54+56+...+5202
=>25S-S=(52+54+56+...+5202)-(1+52+54+...+5200)
=>24S=5202-1
\(\Rightarrow S=\frac{5^{202}-1}{24}\)
b.ta có:
\(\frac{a-1}{2}=\frac{5a-5}{10};\frac{b+3}{4}=\frac{3b+9}{12};\frac{c-5}{6}=\frac{4c-20}{24}\)
\(\Rightarrow\frac{5a-5}{10}=\frac{3b+9}{12}=\frac{4c-20}{24}=\frac{5a-5-3b-9-4c+20}{10-12-24}=\frac{\left(5a-3b-4c\right)+\left(20-9-5\right)}{-26}\)
\(=\frac{46+6}{-26}=\frac{52}{-26}=-2\)
\(\Rightarrow a-1=-2.2=-4\Rightarrow a=-3\)
\(\Rightarrow b+3=-2.4\Rightarrow b=-11\)
\(\Rightarrow c-5=-2.6=-12\Rightarrow c=-7\)
vậy a=-3;b=-11;c=-7
\(\frac{a-1}{2}\) = \(\frac{b+3}{4}\)=\(\frac{c-5}{6}\)và 5a-3b-4c=46
\(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}=k\)\(\overline{1}\)
a=2k+1
b= 4k-3
c=6k+5
Thay vào \(\overline{1}\)ta đc : 5(2k+1)-3(4k-3)-4(6k+5)=46
=10k+5-12k-9-32k+20=46
=\(\frac{10k-32k-12k}{5-9-20}=-\frac{46}{24}=-\frac{23}{12}\)??????????????????
Ta có:a/4=b/6 =>a/20=b/30 (1)
b/5=c/8 =>b/30=c/48 (2)
Từ (1) và (2) =>a/20=b/30=c/48=>5a/100=3b/90=3c/144
Áp dụng t/c dãy tỉ số bằng nhau ta có :
5a/100=3b/90=3c/144=5a-3b-3c/100-90-144=-536/-134=4
+) a/20=4=>a=80
+)b/30=4=.b=120
+)c/48=4=>192
Ta có: \(\dfrac{3}{5}a=\dfrac{2}{3}b\)
\(\Leftrightarrow\dfrac{a}{\dfrac{5}{3}}=\dfrac{b}{\dfrac{3}{2}}\)
Đặt \(\dfrac{a}{\dfrac{5}{3}}=\dfrac{b}{\dfrac{3}{2}}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k\\b=\dfrac{3}{2}k\end{matrix}\right.\)
Ta có: \(a^2-b^2=38\)
\(\Leftrightarrow k^2\cdot\dfrac{25}{9}-k^2\cdot\dfrac{9}{4}=38\)
\(\Leftrightarrow k^2=72\)
Trường hợp 1: \(k=6\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k=10\sqrt{2}\\b=\dfrac{3}{2}k=9\sqrt{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-6\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}k=-10\sqrt{2}\\b=\dfrac{3}{2}k=-9\sqrt{2}\end{matrix}\right.\)