Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) <=>
Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).
b) <=>
Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: điều kiện xác định của bpt \(x+3-\dfrac{1}{x+7}< -\dfrac{1}{x+7}\) là \(x\ne-7\)
\(\Rightarrow x=-7\) không phải là nghiệm của bpt trên
Lại có: \(x+3< 2\\ \Leftrightarrow x< 2-3\\ \Leftrightarrow x< -1\)
\(\Rightarrow x=-7\) thỏa mãn bpt \(x+3< 2\) \(\left(-7< -1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đkxđ: \(x-5\ne0\Leftrightarrow x\ne5\).
b) Đkxđ: \(x\in R\).
c) Đkxđ: \(x^2-x-2\ge0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\ge0\)
Th1: \(\left\{{}\begin{matrix}x-1\ge0\\x-2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow x\ge2\).
Th2: \(\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\)\(\Leftrightarrow x< 1\).
Đkxđ: \(\left[{}\begin{matrix}x\ge2\\x< 1\end{matrix}\right.\).
d) Đkxđ: \(x\in R\).
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 2
f(x) =|...|
ghép g(x) =x^2 -2x-3
và -(x^2 -2x-3)
m<0 vô nghiệm
m=0 2 nghiệm
m=4 3 nghiệm
0<n<4 4 nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)
Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
Bài 4: Tương đương giống hôm nọ thôi : V
Bài 5 : Thiếu ĐK thì vứt luôn : V
Bài 7: Tương đương
( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)
Bài 8 : Đây là 1 dạng của BĐT hoán vị
@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhân hai vế của bất phương trình với x ta được:\(1< x\). Bất phương trình này không tương đương với bất phương trình \(\dfrac{1}{x}< 1\) vì chưa thể khẳng định \(x>0\) mà ta phải xét hai trường hợp:
Th1: x > 0: \(Bpt\Leftrightarrow1< x\).
Th2: x < 0 \(Bpt\Leftrightarrow1>x\)
Cách 1 (đồ thị): Đầu tiên ta xác định miền nghiệm của hệ bất phương trình sau: \(\left\{{}\begin{matrix}x>0\\y>0\\\dfrac{x}{3}+\dfrac{y}{4}\le1\end{matrix}\right.\) như sau:
Sau đó ta tìm tất cả các điểm nguyên nằm ở miền trong tam giác OAB. Ta nhận thấy các điểm này là \(\left(1,1\right);\left(1,2\right);\left(2,1\right)\). Vậy các nghiệm (x; y) của bpt là \(\left(1;1\right),\left(1;2\right),\left(2;1\right)\)
Cách 2: (đại số)
Ta có \(\dfrac{x}{3}+\dfrac{y}{4}\le1\) nên \(\dfrac{x}{3}< 1\) \(\Leftrightarrow x< 3\) \(\Rightarrow x\in\left\{1,2\right\}\)
\(\dfrac{y}{4}< 1\Rightarrow y< 4\Rightarrow y\in\left\{1,2,3\right\}\)
Thử lại, ta thấy chỉ có các cặp \(\left(x;y\right)=\left(1;1\right),\left(1;2\right),\left(2;1\right)\) là thỏa mãn. Vậy...