K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' = 0 <=>  2 x 4   -   1   >   0 <=> x > 1/16 => Khoảng đồng biến của hàm số là 1 16 ; + ∞

Chọn C 

7 tháng 8 2023

\(y'=0\Leftrightarrow4x^3-4x=0\Leftrightarrow4x\left(x^2-1\right)=0\\ \Leftrightarrow x=\pm1.và.x=0\)

\(HSNB:\left(-\infty;-1\right)\cup\left(0;1\right)\\ HSĐB:\left(-1;0\right)\cup\left(1;+\infty\right)\)

5 tháng 11 2018

Đáp án: A.

Hàm số dạng này có một điểm cực đại tại x = 0. Vậy hàm số đồng biến trên khoảng (- ∞ ; 0).

22 tháng 2 2017

Đáp án: A.

Hàm số dạng này có một điểm cực đại tại x = 0. Vậy hàm số đồng biến trên khoảng (- ∞ ; 0).

18 tháng 4 2017

Đáp án: A.

Hàm số nghịch biến trên từng khoảng ( - ∞ ; -m), (-m;  + ∞ ) khi và chỉ khi

⇔ - m 2  + 5m - 4 < 0

 

 

13 tháng 6 2018

a) y = x – sinx, x ∈ [0; 2π].

y′ = 1 – cosx ≥ 0 với mọi x ∈ [0; 2π]

Dấu “=” xảy ra chỉ tại x = 0 và x = 2π.

Vậy hàm số đồng biến trên đoạn [0; 2π].

c) Xét hàm số y = sin(1/x) với x > 0.


Giải bất phương trình sau trên khoảng (0;  + ∞ ):

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, hàm số đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Và nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

với k = 0, 1, 2 …

3 tháng 12 2018

+ Sử dụng tính chất: Hàm số y= logax đồng biến trên TXĐ khi a> 1nên y= f(x)  = lnx

là hàm số đồng biến.

+ Sử dụng tính chất: Hàm số y= ax  nghịch biến trên R khi 0< a< 1nên 

Chọn C

13 tháng 5 2018

Đáp án: A.

Hàm số nghịch biến trên từng khoảng (- ∞ ; -m), (-m; + ∞ ) khi và chỉ khi

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ - m 2 + 5m - 4 < 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12