Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Có \(y=x^3-3mx^2+2\Rightarrow y'=3x^2-6mx=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=2m\end{matrix}\right.\)
Cực trị \(\left\{\begin{matrix} A(0,2)\\ B(2m,2-4m^3)\end{matrix}\right.\)
Nếu \(m>0\) thì cực tiểu là \(B\). Khi đó khoảng cách từ \(B\mapsto \Delta\)
\(d=\frac{|-2m-(2-4m^3)+2|}{\sqrt{2}}=\sqrt{2}\Leftrightarrow |2m^3-m|=1\)
Đến đây xét TH để phá trị tuyệt đối ta thu được \(m=1\) thoả mãn
Nếu \(m<0\) thì cực tiểu là $A$
\(d=\frac{|-0-2+2|}{\sqrt{2}}=0\neq \sqrt{2}\) nên loại
Vậy tổng tất cả các giá trị $m$ thỏa mãn là $1$ , tức đáp án $C$
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow mx-\sqrt{x-3}=m+1\Leftrightarrow m\left(x-1\right)=\sqrt{x-3}+1\)
\(\Leftrightarrow m=\frac{\sqrt{x-3}+1}{x-1}\)
Đặt \(\sqrt{x-3}=t\ge0\) \(\Rightarrow x=t^2+3\Rightarrow m=\frac{t+1}{t^2+2}\)
Xét hàm \(f\left(t\right)=\frac{t+1}{t^2+2}\Rightarrow f'\left(t\right)=\frac{t^2+2-2t\left(t+1\right)}{\left(t^2+2\right)^2}=\frac{-t^2-2t+2}{\left(t^2+2\right)^2}\)
\(f'\left(t\right)=0\Rightarrow t=\sqrt{3}-1\)
Ta có \(f\left(\sqrt{3}-1\right)=\frac{1+\sqrt{3}}{4}\); \(\lim\limits_{t\rightarrow+\infty}\frac{t+1}{t^2+1}=0\); \(f\left(0\right)=\frac{1}{2}\)
Dựa vào BBT, để pt đã cho có 2 nghiệm pb thì \(\frac{1}{2}\le m< \frac{1+\sqrt{3}}{4}\)
\(s\left(t\right)=v_0.t+\dfrac{1}{2}at^2=25t-\dfrac{49}{10}t^2\)
\(s'\left(t\right)=25-\dfrac{49}{5}t=0\)
\(\Rightarrow t=\dfrac{125}{49}\)
Vậy sau \(\dfrac{125}{49}\left(s\right)\) viên đạn sẽ đạt độ cao lớn nhất
Lời giải
Từ bảng biến thiên ta thấy ĐTHS có 2 điểm cực trị.
Điểm cực đại: \((-1;5)\)
Điểm cực tiểu: \((3;1)\)