Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)
Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)
\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)
\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)
\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)
\(\Rightarrow P\ge45\)
Dấu "=" xảy ra khi xy=2
Lại có \(x+y=\sqrt{10}\)
\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)
\(\Rightarrow y^2-\sqrt{10y}+2=0\)
Ta có \(\Delta=10-8=2\)
\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
Bài này nhiều bạn đăng rồi, vô lục câu hỏi của CTV Lê Tài Bảo Châu đó, kéo xuống là thấy.
\(S^2=\left(\left|x\right|+\left|y\right|+\left|x\right|\right)^2=x^2+y^2+z^2+2\left(\left|x\right|\left|y\right|+\left|y\right|\left|z\right|+\left|z\right|\left|x\right|\right)\)
\(S^2=x^2+y^2+z^2+\left|x\right|\left(\left|y\right|+\left|z\right|\right)+\left|y\right|\left(\left|z\right|+\left|x\right|\right)+\left|z\right|\left(\left|x\right|+\left|y\right|\right)\)
Áp dụng BĐT chứa dấu GTTĐ ta có:
\(\left|y\right|+\left|z\right|\ge\left|y+z\right|=\left|-x\right|=\left|x\right|\Rightarrow\left|x\right|\left(\left|y\right|+\left|z\right|\right)\ge z^2\)
Cmtt:\(\left|y\right|\left(\left|z\right|+\left|x\right|\right)\ge y^2,\left|z\right|\left(\left|x\right|+\left|y\right|\right)\ge z^2\)
Vì vậy \(S^2\ge2\left(x^2+y^2+z^2\right)\Rightarrow S^2\ge16\Rightarrow S\ge4\)
Dấu "=" xảy ra khi (x;y;z)=(2;-2;0) và hoán vị của nó, ta có S=4
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)