Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A\in Z\Leftrightarrow n+3⋮2n-2\)
\(\Leftrightarrow2n+6⋮2n-2\)
\(\Leftrightarrow2n-2+8⋮2n-2\)
Mà \(2n-2⋮2n-2\)
\(\Rightarrow8⋮2n-2\)
\(\Rightarrow2n-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng rùi tìm n nguyên
Lê Tài Bảo Châu từ dòng thứ 2 không thể dùng dấu tương đương được, vì điều ngược lại chưa chắc đã đúng, với lại tìm n nguyên xong phải thử lại lọc ra các giá trị thỏa mãn.
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
\( Để A=\frac{n+10}{2n-8}\)CÓ GIÁ TRỊ NGUYÊN
\(\Rightarrow n+10⋮2n-8\)
\(\Rightarrow2\left(n+10\right)⋮2\left(n-4\right)\)
\(\Rightarrow n+10⋮n-4\)
\(\Rightarrow\left(n-4\right)+14⋮n-4\)
\(\Rightarrow n-4\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
Vì n là số tự nhiên \(\Rightarrow n\in\left\{2;3;5;6;11;18\right\}\)
\(A=\frac{23n+1}{n-2}=\frac{23n-46+46+1}{n-2}=\frac{23\left(n-2\right)+47}{n-2}=23+\frac{47}{n-2}\)
A là số nguyên <=> \(\frac{47}{n-2}\) là số nguyên <=> \(47⋮n-2\) hay \(n-2\inƯ\left(47\right)=\left\{-47;-1;1;47\right\}\)
<=> \(n\in\left\{-45;1;3;49\right\}\)
Kết luận:...
\(A=\frac{23n+1}{n-2}=\frac{23\left(n-2\right)+47}{n-2}=23+\frac{47}{n-2}\)
A nguyên <=> \(\frac{47}{n-2}\)nguyên
=> \(47⋮n-2\)=> \(n-2\inƯ\left(47\right)=\left\{\pm1;\pm47\right\}\)
n-2 | 1 | -1 | 47 | -47 |
n | 3 | 1 | 49 | -45 |
Để A thuộc Z
=> 3n + 2 chia hết cho n - 1
=> 3n - 3 + 3 + 2 chia hết cho n - 1
=> 3(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) ={1 ; -1 ; 5 ; -5}
Ta có bảng sau ;
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(A=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để \(3+\frac{5}{n-1}\) có gt nguyên <=> \(\frac{5}{n-1}\) có gt nguyên
=> n - 1 thuộc Ư(5) = { - 5; - 1; 1 ; 5 }
=> N = { - 4; 0 ; 2 ; 6 }
Để A= \(\frac{3n+2}{n-1}\) có giá trị là số nguyên
=> 3n+2\(⋮\)n-1
=> 3(n-1)+5\(⋮\)n-1
=> 3(n-1)\(⋮\)n-1=>5\(⋮\)n-1
=>n-1\(\in\)Ư(5)={\(\pm1,\pm5\)}
vậy n-1 \(\in\){2,6,-4}