Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{x-3}\Rightarrow x-3\inƯ\left(1\right)=\left\{\pm1\right\}\)
x-3 | 1 | -1 |
x | 4 | 2 |
\(B=\dfrac{7-x}{x-5}=\dfrac{-\left(x-5-2\right)}{x-5}=\dfrac{-\left(x-5\right)+2}{x-5}\Rightarrow x-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-5 | 1 | -1 | 2 | -2 |
x | 6 | 4 | 7 | 3 |
\(C=\dfrac{5x-19}{x-5}=\dfrac{5\left(x-5\right)+6}{x-5}\Rightarrow x-5\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-5 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 6 | 4 | 7 | 3 | 8 | 2 | 11 | -1 |
a ) Để A đạt giá trị lớn nhất thì \(x-3\) phải là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Leftrightarrow x=2\)
Khi đó : \(A=\frac{1}{2-3}=-1\)
b ) Ta có : \(B=\frac{7-x}{x-5}=\frac{2-\left(x-5\right)}{x-5}=\frac{2}{x-5}-1\)
Để B nhỏ nhất thì \(\frac{2}{x-5}\) cũng phải nhỏ nhất .
\(\Rightarrow x-5\) là số nguyên âm lớn nhất
\(\Rightarrow x-5=-1\Leftrightarrow x=4\Rightarrow B=-3\)
C ) Để C nhỏ nhất thì \(\frac{1}{x-4}\) cũng phải nhỏ nhất .
\(\Rightarrow x-4\) là số nguyên âm lớn nhất
\(\Rightarrow x-4=-1\Leftrightarrow x=3\Rightarrow C=4\)
a) A = 1/(x - 3)
1/(x - 3) = -1 <=> x - 3 = -1
x - 3 = -1
x = -1 + 3
x = 2
b) B = (7 - x) / (x - 5) = ( - (x - 5) + 2) / (x - 5)
=>x - 5 \(\in\) Ư(2) = {+/- 1, +/- 2}
Nhưng vì kết quả nhỏ nhất nên B = -2
=>x - 5 = -2
x = -2 + 5
x = 3
c) C = (5x - 19) / (x - 5) = (5(x - 5) + 6) / x - 5
=>x - 5 \(\in\) Ư(6) = {+/-1, +/-2, +/-3, +/-6}
Vì C bé nhất nên C = -6
=>x - 5 = -6
x = -6 + 5
x = -1
a) để A có giá trị nhỏ nhất
\(\Rightarrow A=\frac{1}{x-3}\ge-1\)
Dấu "=" xảy ra khi
\(A=\frac{1}{x-3}=-1\)
=> x - 3 = -1
x = 2
KL: giá trị nhỏ nhất của A= -1 tại x =2
b) ta có: \(B=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5.\left(x-4\right)+1}{x-4}=\frac{5.\left(x-4\right)}{x-4}+\frac{1}{x-4}\)\(=5+\frac{1}{x-4}\)
Để B đạt giá trị nhỏ nhất
\(\frac{1}{x-4}\ge-1\)
Dấu "=" xảy ra khi
1/x-4 = -1
=> x-4= -1
=> x = 3
=> 5+ 1/x-4 = 5+ 1/3-4 = 5 + (-1) =4
KL: giá trị nhỏ nhất của B là 4 tại x = 3
p/s nha!
a) Công chúa Ori làm sai rùi nha
TH1:x>=4 => x-3>=1>0 => A>0
TH2: x<=2 => x-3 <= -1 <0 => A>= -1
Dấu = xảy ra <=> x=2
Vậy Min A =-1 tại x=2
b) B= ...=5+1/x-4
TH1: x>=5 => x-4>=1>0 => 1/x-4>0 => B>5
TH2: x<=3 => x-4<=-1 <0 => 1/x-4>=-1 => B >=4
Dấu = xảy ra <=> x=3
Vậy Min B = 4 tại x=3
Vì A nhỏ nhất nên :
\(\frac{1}{x-3}\) nhỏ nhất
=> x - 3 lớn nhất
=> x lớn nhất