Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A có giá trị TN thì:
2n + 5 chia hết cho 3n + 1
Ta có: 2n + 5 chia hết cho 3n + 1
=> (3n + 1) - (2n + 5) chia hết cho 3n + 1
(3n + 1 - 2n - 5) chia hết cho 3n + 1
(n - 4) chia hết cho 3n + 1
=> 3(n - 4) chia hết cho 3n + 1
3n - 12 chia hết cho 3n + 1
3n + 1 - 13 chia hết cho 3n + 1
= > 13 chia hết cho 3n + 1
3n + 1 thuộc U(13) = {1 ; 13}
3n + 1 = 1 => n = 0
3n + 1 = 13 => n = 4
Vậy n thuộc {0 ; 4}
Ta có A=\(\frac{3x\left(2n+5\right)}{2x\left(3n+1\right)}\)
A=\(\frac{6n+15}{6n+2}\)=\(\frac{\left(6n+2\right)+13}{6n+2}\)=\(\frac{6n+2}{6n+2}\)+\(\frac{13}{6n+2}\)=1+\(\frac{13}{6n+2}\)
Để A là số tự nhiên =>6n+2 chia hết cho 13
=>6n+2 thuộc Ư (13)=(1;13)
6n+2=1=>n thuộc Z (loại)
6n+2=13=> ko tìm đc n
Để A có giá trị là SNT \(\Leftrightarrow2n+5⋮3n+1\)
\(\Leftrightarrow6n+15⋮3n+1\)
\(\Leftrightarrow2.\left(3n+1\right)+13⋮3n+1\)
mà \(\Leftrightarrow2.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{1;13\right\}\)( ước phải là SNT )
\(\Rightarrow n\in\left\{0;4\right\}\)
Để A\(\in\)N \(\Leftrightarrow2n+5\)chia hết cho 3n+1
\(\Leftrightarrow\)6n+15chia hết cho 3n+1
\(\Leftrightarrow\)2(3n+1)+13chia hết cho 3n+1
\(\Leftrightarrow\)13 chia hết cho 3n+1
\(\Leftrightarrow\)3n+1 \(\inƯ\left(13\right)\)
Sau đó bạn tìm ra n vs 3n+1 lần lượt =1;13
Hãy Nhớ Tính xoq thì nhớ thử lại nhé
chúc bn hk giỏi