K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

\(DK:x\ge\frac{2018}{2019}\)

\(PT\Leftrightarrow x^2-2x+1+2019x-2018-2\sqrt{2019x-2018}+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2019x-2018}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(\sqrt{2019x-2018}-1\right)^2=0\end{cases}}\Leftrightarrow x=1\left(TM\right)\)

28 tháng 2 2022

trùi s ghim lên đay cx k ai giải v trùi

27 tháng 8 2016

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

20 tháng 9 2016

x+y =0

=> P = 1

4 tháng 4 2018

\(\Delta=b^2-4ac=2017^2-2016.\left(-2018\right)=20341441>0\)

=> Phương trình có 2 nghiệm phân biệt

\(\orbr{\begin{cases}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-2017-\sqrt{20341441}}{4032}\\x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-2017+\sqrt{20341441}}{4032}\end{cases}}\)

k mình nha bn thanks 

25 tháng 5 2019

Em nghĩ nếu làm như Lê Hồ Trọng Tín thì dấu "=" không xảy ra -> sai nên em xin chia sẻ cách làm của mình.Mong được mọi người góp ý.

Theo BĐT AM-GM

\(\sqrt{2019x\left(y+2\right)}=\sqrt{673}.\sqrt{3.x\left(y+2\right)}\)

\(\le\frac{\sqrt{673}}{2}\left[3+x\left(y+2\right)\right]=\frac{\sqrt{673}}{2}\left(3+xy+2x\right)\)

Tương tự với hai BĐT còn lại và cộng theo vế ta được:

\(M\le\frac{\sqrt{673}}{2}\left[9+\left(xy+yz+zx\right)+2\left(x+y+z\right)\right]\)

\(\le\frac{\sqrt{673}}{2}\left[9+\frac{\left(x+y+z\right)^2}{3}+6\right]\le\frac{\sqrt{673}}{2}\left(9+3+6\right)=6=9\sqrt{673}\)

Dấu "=" xảy ra khi x =y = z  =1

Vậy...

25 tháng 5 2019

Theo BĐT AM-GM:

\(\sqrt{2019x\left(y+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019x+y+2)

\(\sqrt{2019y\left(z+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019y+z+2)

\(\sqrt{2019z\left(x+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019z+x+2)

=>M​\(\le\)\(\frac{1}{2}\)[2019(x+y+z)+(x+y+z)+6]\(\le\)3033

Vậy MaxM=3033 <=>\(\hept{\begin{cases}2019x=y+2\\2019y=z+2\\2019z=x+2\end{cases}}\)

16 tháng 6 2019

Cách của mình dài ,bạn nào có cách khác ngắn gọn hơn thì chỉ cho mình với ạ. Cảm ơn

Trước hết ta chứng minh  BĐT phụ sau: \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}.\)(*)

Thật vậy: \(ax+by\le\sqrt{\left(ax+by\right)^2}\le\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\)(BĐT bunhiacopxi)

\(\Leftrightarrow a^2+b^2+x^2+y^2+2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge a^2+b^2+x^2+y^2+2\left(ax+by\right)\)

\(\Leftrightarrow\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)

\(\Leftrightarrow\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\). BĐT đã được chứng minh

Xét : \(\left(x+\sqrt{1+x^2}\right)\left(x-\sqrt{1+x^2}\right)=x^2-\left(1+x^2\right)=-1.\)

Theo giả thết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)

\(\Rightarrow2018\left(x-\sqrt{1+x^2}\right)=-\left(y+\sqrt{1+y^2}\right).\)

\(\Leftrightarrow2018x+y=2018\sqrt{1+x^2}-\sqrt{1+y^2}.\)(1)

Tương tự:

Xét:\(\left(y+\sqrt{1+y^2}\right)\left(y-\sqrt{1+y^2}\right)=y^2-\left(1+y^2\right)=-1\)

Theo giả thiết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)

\(\Rightarrow2018\left(y-\sqrt{1+y^2}\right)=-\left(x+\sqrt{1+x^2}\right)\)

\(\Leftrightarrow x+2018y=-\sqrt{1+x^2}+2018\sqrt{1+y^2}\)(2)

Cộng các vế của (1) và (2) lại ta được

\(2019\left(x+y\right)=2017\left(\sqrt{1+x^2}+\sqrt{1+y^2}\right)\)

Khi đó áp dụng bất đẳng thức (*) ta có;

\(2019\left(x+y\right)=2017\left(\sqrt{1^2+x^2}+\sqrt{1^2+y^2}\right)\ge2017\left(\sqrt{\left(1+1\right)^2+\left(x+y\right)^2}\right)\)

\(\Rightarrow2019\left(x+y\right)\ge2017\sqrt{4+\left(x+y\right)^2}\)

Đặt \(x+y=a>0\)ta có;

\(2019a\ge2017\sqrt{4+a^2}\Leftrightarrow2019^2a^2\ge2017^2a^2+2017^2.4\)

\(\Leftrightarrow\left(2019^2-2017^2\right)a^2\ge\left(2017.2\right)^2\Leftrightarrow a^2\ge\frac{2017^2.2.2}{2.4036}\Leftrightarrow a^2\ge\frac{2017^2}{2018}\)

\(\Rightarrow a\ge\frac{2017}{\sqrt{2018}}\Rightarrow x+y\ge\frac{2017}{\sqrt{2018}}.\)

Vậy giá trị nhỏ nhất của biểu thức P=x+y là \(\frac{2017}{\sqrt{2018}}\)

Dấu '=' xảy ra khi \(x=y=\frac{2017}{2\sqrt{2018}}.\)

16 tháng 6 2019

bn đào thu hà k cần cm bdt phụ đâu đấy là bdt mincopski đc dùng luôn