Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: |2x-3|=|1-x|
=>\(\left[{}\begin{matrix}2x-3=1-x\\2x-3=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x+x=3+1\\2x-x=-1+3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=4\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
b: \(x^2-4x< =5\)
=>\(x^2-4x-5< =0\)
=>\(x^2-5x+x-5< =0\)
=>\(x\left(x-5\right)+\left(x-5\right)< =0\)
=>\(\left(x-5\right)\left(x+1\right)< =0\)
TH1: \(\left\{{}\begin{matrix}x-5>=0\\x+1< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=5\\x< =-1\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-5< =0\\x+1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =5\\x>=-1\end{matrix}\right.\)
=>-1<=x<=5
c: 2x(2x-1)<=2x-1
=>\(\left(2x-1\right)\cdot2x-\left(2x-1\right)< =0\)
=>\(\left(2x-1\right)^2< =0\)
mà \(\left(2x-1\right)^2>=0\forall x\)
nên \(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>\(x=\dfrac{1}{2}\)
a) \(\left|2x-3\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=1-x\\2x-3=x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
b) \(x^2-4x\le5\)
\(\Leftrightarrow x^2-4x-5\le0\)
\(\Leftrightarrow x^2-5x+x-5\le0\)
\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)\le0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\le0\)
Đến đây dễ r
c) \(2x\left(2x-1\right)\le2x-1\)
\(\Leftrightarrow2x\left(2x-1\right)-\left(2x-1\right)\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\le0\)
Mà \(\left(2x-1\right)^2\ge0\)nên 2x - 1=0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$
\(x=\sqrt{\dfrac{2\sqrt{3}+2-6\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2-4\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}\) ko tồn tại vì 2-4căn 3<0
Ta có \(A=\frac{1}{\sqrt{4x^2+4x+1}}=\frac{1}{\sqrt{\left(2x+1\right)^2}}=\frac{1}{\left|2x+1\right|}\)
\(B=\frac{2x-2}{\sqrt{x^2-2x+1}}=\frac{2\left(x-1\right)}{\sqrt{\left(x-1\right)^2}}=\frac{2\left(x-1\right)}{\left|x-1\right|}\)
với x;y>=0 ta có:
\(A^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2=2x+1+2y+1+2\sqrt{\left(2x+1\right)\left(2y+1\right)}\)
\(=2\left(x+y\right)+2+\sqrt{4xy+2x+2y+1}=2\left(x+y\right)+2+\sqrt{4xy+2\left(x+y\right)+1}\)
\(2=2\left(x^2+y^2\right)=\left(1+1\right)\left(x^2+y^2\right)>=\left(x+y\right)^2\Rightarrow x+y< =\sqrt{2}\)(bđt bunhiacopxki)
\(2xy< =x^2+y^2=1\Rightarrow2\cdot2xy=4xy< =2\cdot1=2\)
\(\Rightarrow A^2=2\left(x+y\right)+2+2\sqrt{4xy+2\left(x+y\right)+1}< =2\sqrt{2}+2+2\sqrt{2+2\sqrt{2}+1}\)
\(=2\sqrt{2}+2+2\sqrt{\left(\sqrt{2}+1\right)^2}=2\sqrt{2}+2+2\left(\sqrt{2}+1\right)4\sqrt{2}+4\)
\(\Rightarrow A< =\sqrt{4\sqrt{2}+4}\)
dấu = xảy ra khi x=y=\(\sqrt{\frac{1}{2}}\)
vậy max A là \(\sqrt{4\sqrt{2}+4}\)khi \(x=y=\sqrt{\frac{1}{2}}\)