Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne-3;x\ne2\)
b) \(P=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(P=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(P=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(P=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
vậy \(P=\frac{x-4}{x-2}\)
\(P=\frac{-3}{4}\) \(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)
\(\Leftrightarrow4\left(x-4\right)=-3.\left(x-2\right)\)
\(\Leftrightarrow4x-16=-3x+6\)
\(\Leftrightarrow7x=22\)
\(\Leftrightarrow x=\frac{22}{7}\)
c) \(P\in Z\Leftrightarrow\frac{x-4}{x-2}\in Z\)
\(\frac{x-2-6}{x-2}=1-\frac{6}{x-2}\in Z\)
mà \(1\in Z\Rightarrow\left(x-2\right)\inƯ\left(6\right)\in\left(\pm1;\pm2;\pm3;\pm6\right)\)
mà theo ĐKXĐ: \(\Rightarrow\in\left(\pm1;-2;3;\pm6\right)\)
thay mấy cái kia vào rồi tìm \(x\)
d) \(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)
khi \(x=3\Rightarrow P=\frac{3-4}{3-2}=-1\)
khi \(x=-3\Rightarrow P=\frac{-3-4}{-3-2}=\frac{-7}{-5}=\frac{7}{5}\)
a)
2x-3=0 => x=3/2
b)
2x^2 +1 =0 => vô nghiệm
c) x^2 -25 =0 => x=5 loiaj
x=-5 nhân
d)
x^2 -25 =0 => x=5 loại
x=-5 loại
a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)
\(ĐK:3x^2-7x+2\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)
=> 3x2 + 5x + 2 =0
<=> 3x2 + 3x + 2x +2 = 0
<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0
<=> ( x + 1 )(3x + 2 ) =0
<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = -2/3
b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)
<=> 2x2+ 10x + 12 = 0
<=> x2 + 5x+ 6 =0
<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\)
Vậy x = -3
c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)
<=> x3 + x2 -x -1 =0
<=> ( x - 1 )(x2 + 2x + 1 )
<=> ( x-1 ) (x+1)2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = { 1 ; -1 }
a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)
<=> 3x^2 + 5x - 2 = 0
<=> (3x - 1)(x + 2) = 0
<=> 3x - 1 = 0 hoặc x + 2 = 0
<=> 3x = 1 hoặc x = -2
<=> x = 1/3 (ktm) hoặc x = -2 (tm)
=> x = -2
b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)
<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)
<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)
<=> 2(x + 3) = 0
<=> x + 3 = 0
<=> x = -3
c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)
<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)
<=> (x + 1)(x - 1) = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
a, sửa đề : \(C=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{1}{2-x}\)ĐK : \(x\ne-3;2\)
\(=\frac{\left(x+2\right)\left(x-2\right)-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-12-x}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b, Ta có : \(x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\Leftrightarrow x=-1;x=2\)
Kết hợp với giả thiết vậy x = -1
Thay x = -1 vào biểu thức C ta được : \(\frac{-1-4}{-1-2}=-\frac{5}{-3}=\frac{5}{3}\)
c, Ta có : \(C=\frac{1}{2}\Rightarrow\frac{x-4}{x-2}=\frac{1}{2}\Rightarrow2x-8=x-2\Leftrightarrow x=6\)( tm )
d, \(C>1\Rightarrow\frac{x-4}{x-2}>1\Rightarrow\frac{x-4}{x-2}-1>0\Leftrightarrow\frac{x-4-x+2}{x-2}>0\Leftrightarrow\frac{-2}{x-2}>0\)
\(\Rightarrow x-2< 0\Leftrightarrow x< 2\)vì -2 < 0
e, tự làm nhéee
f, \(C< 0\Rightarrow\frac{x+4}{x+2}< 0\)
mà x + 4 > x + 2
\(\hept{\begin{cases}x+4>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x< -2\end{cases}\Leftrightarrow-4< x< -2}}\)
Vì \(x\inℤ\Rightarrow x=-3\)( ktmđk )
Vậy ko có x nguyên để C < 0
g, Ta có : \(\frac{x+4}{x+2}=\frac{x+2+2}{x+2}=1+\frac{2}{x+2}\)
Để C nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
h, Ta có : \(D=C\left(x^2-4\right)=\frac{x+4}{x+2}.\frac{\left(x-2\right)\left(x+2\right)}{1}=x^2+2x-8\)
\(=\left(x+1\right)^2-9\ge-9\)
Dấu ''='' xảy ra khi x = -1
Vậy GTNN D là -9 khi x = -1
a, Ta có : \(\dfrac{98x^2-2}{x-2}=0\Leftrightarrow\left\{{}\begin{matrix}98x^2-2=0\\x-2\ne0\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x^2=\dfrac{1}{49}\\x\ne2\end{matrix}\right.\Leftrightarrow x=\pm\dfrac{1}{7}\)
Vậy giá trị của phân thức này bằng 0 khi \(x=\pm\dfrac{1}{7}\)
b, Ta có : \(\dfrac{3x-2}{x^2+2x+1}=0\Leftrightarrow\dfrac{3x-2}{\left(x+1\right)^2}=0\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\\left(x+1\right)^2\ne0\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\x\ne-1\end{matrix}\right.\)
Vậy giá trị của phân thức này bằng 0 khi \(x=\dfrac{2}{3}\)
a)
98x^2 -2 =0 =>x^2 =1/49 => x= -+1/7 nhận
b)
3x-2=0=>x=2/3 nhận
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
1, \(=\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right]:\frac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)
\(=\left(1+x+x^2-x\right):\frac{1-x^2}{\left(1-x\right)\left(1-x^2\right)}\)\(=\left(x^2+1\right)\left(1-x\right)\)
2, để B<0 <=> (x2+1)(1-x)<0
vì x^2+1 > 0 với mọi x
=> \(\hept{\begin{cases}x^2+1>0\\1-x< 0\end{cases}\Leftrightarrow x>1}\)
3, \(\left|x-4\right|=5\Leftrightarrow\orbr{\begin{cases}x=9\\x=-1\left(loại\right)\end{cases}}\)
Thay x=9 vào B ta có: B=(92+1)(1-9)=82.(-8)=-656
\(A=\left(x-4\right)^2-\left(x+4\right)^2-16\left(x-2\right)\)
\(=x^2-8x+16-x^2-8x-16-16x+32\)
\(=-32x+32\)
Biểu thức phụ thuộc vào giá trị của biến
Điều kiện:
Để biểu thức đã cho có giá trị bằng 2 thì:
Kết hợp điều kiện phương trình đã cho có 2 nghiệm là x = 0 và x = 5 3
Chọn đáp án A