\(\left\{{}\begin{matrix}x^2+10x+16\le0\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2021

\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)

Xét BPT: \(mx\ge3m+1\Leftrightarrow m\left(x-3\right)\ge1\) trên \(\left[-8;-2\right]\)

Do \(-8\le x\le-2\Rightarrow x-3< 0\)

Do đó BPT tương đương:

\(m\le\dfrac{1}{x-3}\) (1)

(1) vô nghiệm khi và chỉ khi \(m>\max\limits_{\left[-8;-2\right]}\dfrac{1}{x-3}\)

\(\Rightarrow m>-\dfrac{1}{5}\)

NV
24 tháng 4 2020

\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)

Xét BPT \(mx\ge3m+1\) trên \(\left[-8;-2\right]\)

\(\Leftrightarrow m\left(x-3\right)\ge1\)

\(\Leftrightarrow m\le\frac{1}{x-3}\)

Để BPT vô nghiệm \(\Leftrightarrow m>\max\limits_{\left[-8;-2\right]}\frac{1}{x-3}=-\frac{1}{5}\)

Vậy \(m>-\frac{1}{5}\) thì BPT đã cho vô nghiệm

NV
18 tháng 2 2020

\(x^2+10x+16\le0\Leftrightarrow-8\le x\le-2\)

Xét BPT dưới với \(x\in\left[-8;-2\right]\):

\(m\left(x-1\right)\ge1\)

\(\Leftrightarrow m\le\frac{1}{x-1}\) (do \(x-1< 0\))

Để BPT vô nghiệm

\(\Leftrightarrow m>\max\limits_{\left[-8;-2\right]}\frac{1}{x-1}=-\frac{1}{9}\)

Vậy \(m>-\frac{1}{9}\) thì BPT vô nghiệm

NV
15 tháng 3 2019

\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)

- Với \(m=0\Rightarrow0>1\) (vô nghiệm) \(\Rightarrow\) thỏa mãn (1)

- Với \(m>0\Rightarrow x>\frac{3m+1}{m}\)

Để hệ đã cho vô nghiệm \(\Rightarrow\frac{3m+1}{m}\ge-2\Leftrightarrow\frac{5m+1}{m}\ge0\) (thỏa \(\forall m>0\)) (2)

- Với \(m< 0\Rightarrow x< \frac{3m+1}{m}\)

Để hệ đã cho vô nghiệm

\(\Rightarrow\frac{3m+1}{m}\le-8\Leftrightarrow\frac{11m+1}{m}\le0\Rightarrow\frac{-1}{11}\le m< 0\) (3)

Kết hợp (1); (2); (3) ta được \(m\ge\frac{-1}{11}\) thì hệ pt đã cho vô nghiệm

21 tháng 2 2021

pt (1) có nghiệm\(-8< x< 1\)

pt (2) có nghiệm\(x>\dfrac{2}{a^2-3a+2}\) nếu a<1 hay a>2

\(x< \dfrac{2}{a^2-3a+2}\) nếu 1<a <2

pt \(\left(2\right)\)vô nghiệm nếu a=1 hay a=2

Để hệ bpt vô nghiệm:

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{a^2-3a+2}\le-8\\\dfrac{2}{a^2-3a+2}\ge1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{a^2-3a+2}+8\le0\\\dfrac{2}{a^2-3a+2}-1\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2\left(2a-3\right)^2}{a^2-3a+2}\le0\\\dfrac{-a^2+3a}{a^2-3a+2}\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}1< a< 2\\0\le a< 1< 2< a\le3\end{matrix}\right.\)

NV
21 tháng 2 2021

Xét \(x^2+7x-8\le0\Leftrightarrow-8\le x\le1\) hay \(D_1=\left[-8;1\right]\)

Xét \(f\left(x\right)=ax^2-\left(3a-2\right)x-2>0\) (1)

- Với \(a=0\Leftrightarrow x>1\) hệ vô nghiệm (thỏa mãn)

- Với \(a\ne0\) , \(\Delta=\left(3a-2\right)^2+8a=9a^2-4a+4=9\left(a-\dfrac{2}{9}\right)^2+\dfrac{32}{9}>0\)

Gọi 2 nghiệm của pt (1) là \(x_1;x_2\)

TH1: \(\left\{{}\begin{matrix}a>0\\x_1\le-8< 1\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a.f\left(-8\right)\le0\\a.f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\left(88a-18\right)\le0\\a\left(a-3a+2-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow0< a\le\dfrac{9}{44}\)

TH2: \(\left\{{}\begin{matrix}a< 0\\\left[{}\begin{matrix}x_1< x_2\le-8\\1\le x_1< x_2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\left[{}\begin{matrix}\left\{{}\begin{matrix}a.f\left(-8\right)\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{3a-2}{2a}< -8\end{matrix}\right.\\\left\{{}\begin{matrix}a.f\left(1\right)\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{3a-2}{2a}>1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

Tự giải nốt nhé, nhìn mà thấy làm biếng luôn :D

12 tháng 3 2021

Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)

Nếu m = 1, hệ vô nghiệm

Nếu m ≠ 1, hệ tương đương

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)

Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)

 

3 tháng 5 2017

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.

3 tháng 5 2017

b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.