Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) điều kiện cần và đủ \(\Delta< 0\Rightarrow\left(m+2\right)^2-8\left(m^2-m-1\right)< 0\)
\(\Leftrightarrow-7m^2+12m+12< 0\) \(\Rightarrow\left[{}\begin{matrix}m< \dfrac{6-2\sqrt{30}}{7}\\m>\dfrac{6+2\sqrt{30}}{7}\end{matrix}\right.\)
b) ????
b) Xét \(m^2-m-1=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{5}}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Với \(m=\dfrac{1+\sqrt{5}}{2}\) thay vào phương trình ta có:\(-\sqrt{5}x+1\)
Do \(-\sqrt{5}x+1>0\Leftrightarrow x< \dfrac{1}{\sqrt{5}}\) vì vậy \(m=\dfrac{1+\sqrt{5}}{2}\) không thỏa mãn.
Tương tự với \(m=\dfrac{1-\sqrt{5}}{2}\).
Xét \(m^2-m-1\ne0\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1+\sqrt{5}}{2}\\m\ne\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\).
Có \(\Delta=\left(2m-1\right)^2-4.\left(m^2-m-1\right)=5>0\).
Do vậy tam thức bậc hai luôn có hai nghiệm phân biệt nên dấu của tam thức sẽ phụ thuộc vào x.
Kết luận: Không có giá trị nào thỏa mãn.
a)
ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)
ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0
Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0
\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)
\(-1< m< 0\Rightarrow T< 0\)
\(-1< m< 1\Rightarrow M< 0\)
Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)
b)
M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)
Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn
=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm
Để tam thức bậc hai \({x^2} + (m + 1)x + 2m + 3 > 0\)với mọi \(x \in \mathbb{R}\)
Ta có: a = 1 >0 nên \(\Delta < 0\)
\(\begin{array}{l} \Leftrightarrow {(m + 1)^2} - 4.(2m + 3) < 0\\ \Leftrightarrow {m^2} + 2m + 1 - 8m - 12 < 0\\ \Leftrightarrow {m^2} - 6m - 11 < 0\end{array}\)
Tam thức \(f(m) = {m^2} - 6m - 11\) có \(\Delta ' = 20 > 0\) nên f(x) có 2 nghiệm phân biệt \({m_1} = 3+\sqrt{20}; {m_2} = 3-\sqrt{20}\)
Khi đó
\( 3+\sqrt{20} < m < 3-\sqrt{20}\)
Vậy \( 3+\sqrt{20} < m < 3-\sqrt{20}\)
Không có giá trị nào của m thỏa mãn điều kiện này.