tìm các giá trị của m để hàm số sau
Học liệu Hỏi đáp Đăng nhập Đăng ký Học bài Hỏi bài Kiểm tra ĐGNL Thi đấu Bài viết Cuộc thi Tin tức Blog học tập Trợ giúp Về OLM OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay! OLM tuyển CTV cộng đồng hỏi đáp, đăng kí ngay! Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ K Khách Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. Xác nhận câu hỏi phù hợp × Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip Tất cả Mới nhất Câu hỏi hay Chưa trả lời Câu hỏi vip M myyyy 23 tháng 9 2023 tìm các giá trị của m để hàm số saua) \(y=-x^3-3x^2+\left(5-m\right)x\) nghịch biến trên Rb) \(y=x^3+\left(2m-2\right)x^2+mx\) đồng biến trên R #Hỏi cộng đồng OLM #Toán lớp 11 1 NL Nguyễn Lê Phước Thịnh 12 tháng 11 2023 a: \(y=-x^3-3x^2+\left(5-m\right)x\)=>\(y'=-3x^2-3\cdot2x+5-m\)=>\(y'=-3x^2-6x+5-m\)Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)=>\(36+12\left(5-m\right)< =0\)=>\(36+60-12m< =0\)=>\(-12m+96< =0\)=>-12m<=-96=>m>=8b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)=>\(y'=3x^2+\left(4m-4\right)x+m\)Để hàm số đồng biến trên R thì y'>=0 với mọi x=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)=>\(16m^2-32m+16-12m< =0\)=>\(16m^2-44m+16< =0\)=>\(4m^2-11m+4< =0\)=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\) Đúng(0) Các câu hỏi dưới đây có thể giống với câu hỏi trên BT Bình Trần Thị 30 tháng 8 2016 trong các khẳng định sau , khẳng định nào đúng ?khẳng định nào sai ? giải thích vì sao ?a) trên mỗi khoảng mà hàm số y = \(\sin\)x đồng biến thì hàm số y = \(\cos\)x nghịch biến .b) trên mỗi khoảng mà hàm số y = \(\sin\)2x đồng biến thì hàm số y = \(\cos\)2x nghịch...Đọc tiếptrong các khẳng định sau , khẳng định nào đúng ?khẳng định nào sai ? giải thích vì sao ?a) trên mỗi khoảng mà hàm số y = \(\sin\)x đồng biến thì hàm số y = \(\cos\)x nghịch biến .b) trên mỗi khoảng mà hàm số y = \(\sin\)2x đồng biến thì hàm số y = \(\cos\)2x nghịch biến #Hỏi cộng đồng OLM #Toán lớp 11 0 SG Sách Giáo Khoa 4 tháng 4 2017 Tìm đạo hàm của các hàm số sau : a) \(y=\left(x^7-5x^2\right)x^3\) b) \(y=\left(x^2+1\right)\left(5-3x^2\right)\) c) \(y=\dfrac{2x}{x^2-1}\) d) \(y=\dfrac{3-5x}{x^2-x+1}\) e) \(y=\left(m+\dfrac{n}{x^2}\right)^3\) (m, n là các hằng số) #Hỏi cộng đồng OLM #Toán lớp 11 1 MH Minh Hải 9 tháng 4 2017 a) y' = 3.(x7- 5x2)2.(x7- 5x2)' = 3.(x7 - 5x2)2.(7x6 - 10x) = 3x.(x7 - 5x2)2(7x5 - 10). b) y = 5x2 - 3x4 + 5 - 3x2 = -3x4 + 2x2 + 5, do đó y' = -12x3 + 4x = -4x.(3x2 - 1). c) y' = = = . d) y' = = = . e) y' = 3. . = 3. = - .. Đúng(0) SG Sách Giáo Khoa 11 tháng 4 2017 Xác định m để bất phương trình sau nghiệm đúng với mọi \(x\in R\) a) \(f'\left(x\right)>0\) với \(f\left(x\right)=\dfrac{m}{3}x^3-3x^2+mx-5\) b) \(g'\left(x\right)< 0\) với \(g\left(x\right)=\dfrac{m}{3}x^3-\dfrac{m}{2}x^2+\left(m+1\right)x-15\) #Hỏi cộng đồng OLM #Toán lớp 11 0 BT Bình Trần Thị 2 tháng 9 2016 xét hàm số y = f(x) = \(\cos\frac{x}{2}\).a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y)...Đọc tiếpxét hàm số y = f(x) = \(\cos\frac{x}{2}\).a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\) . #Hỏi cộng đồng OLM #Toán lớp 11 0 BT Bình Trần Thị 4 tháng 9 2016 xét hàm số y = f(x) = \(\cos\frac{x}{2}\).a) chứng minh rằng với mỗi số nguyên \(k\) , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .b) lập bảng biến thiên của hàm số y =\(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y)...Đọc tiếpxét hàm số y = f(x) = \(\cos\frac{x}{2}\).a) chứng minh rằng với mỗi số nguyên \(k\) , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .b) lập bảng biến thiên của hàm số y =\(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y =\(\cos\frac{x}{2}\) . #Hỏi cộng đồng OLM #Toán lớp 11 0 BT Bình Trần Thị 31 tháng 8 2016 xét hàm số y = f(x) = \(\cos\frac{x}{2}\).a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành...Đọc tiếpxét hàm số y = f(x) = \(\cos\frac{x}{2}\).a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh ằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\). #Hỏi cộng đồng OLM #Toán lớp 11 0 BT Bình Trần Thị 31 tháng 8 2016 trong các khẳng định sau , khẳng định nào đúng ?khẳng định nào sai ? giải thích vì sao ?a) trên mỗi khoảng mà hàm số y = \(\sin\)x đồng biến thì hàm số y = \(\cos\)x nghịch biến .b) trên mỗi khoảng mà hàm số y = \(\sin\)2x đồng biến thì hàm số y = \(\cos\)2x nghịch...Đọc tiếptrong các khẳng định sau , khẳng định nào đúng ?khẳng định nào sai ? giải thích vì sao ?a) trên mỗi khoảng mà hàm số y = \(\sin\)x đồng biến thì hàm số y = \(\cos\)x nghịch biến .b) trên mỗi khoảng mà hàm số y = \(\sin\)2x đồng biến thì hàm số y = \(\cos\)2x nghịch biến #Hỏi cộng đồng OLM #Toán lớp 11 0 BT Bình Trần Thị 4 tháng 9 2016 cho hàm số y = f(x) = \(2\sin2x\) .a) lập bảng biến thiên của hàm số y = \(2\sin2x\) trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)b) vẽ đồ thị của hàm số y = \(2\sin2x\) . #Hỏi cộng đồng OLM #Toán lớp 11 0 BT Bình Trần Thị 2 tháng 9 2016 cho hàm số y = f(x) = \(2\sin2x\) .a) lập bảng biến thiên của hàm số y = \(2\sin2x\) trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)b) vẽ đồ thị của hàm số y = \(2\sin2x\) . #Hỏi cộng đồng OLM #Toán lớp 11 0 Bảng xếp hạng × Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Tuần Tháng Năm N ngannek 30 GP LD LÃ ĐỨC THÀNH 10 GP KV Kiều Vũ Linh 2 GP NM Nguyễn Minh Nhật VIP 2 GP NT nguyễn thái công 2 GP AA admin (a@olm.vn) 0 GP VT Vũ Thành Nam 0 GP CM Cao Minh Tâm 0 GP NV Nguyễn Vũ Thu Hương 0 GP VD vu duc anh 0 GP
OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
OLM tuyển CTV cộng đồng hỏi đáp, đăng kí ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(y=-x^3-3x^2+\left(5-m\right)x\) nghịch biến trên R
b) \(y=x^3+\left(2m-2\right)x^2+mx\) đồng biến trên R
a: \(y=-x^3-3x^2+\left(5-m\right)x\)
=>\(y'=-3x^2-3\cdot2x+5-m\)
=>\(y'=-3x^2-6x+5-m\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(36+12\left(5-m\right)< =0\)
=>\(36+60-12m< =0\)
=>\(-12m+96< =0\)
=>-12m<=-96
=>m>=8
b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)
=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)
=>\(y'=3x^2+\left(4m-4\right)x+m\)
Để hàm số đồng biến trên R thì y'>=0 với mọi x
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)
=>\(16m^2-32m+16-12m< =0\)
=>\(16m^2-44m+16< =0\)
=>\(4m^2-11m+4< =0\)
=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)
trong các khẳng định sau , khẳng định nào đúng ?khẳng định nào sai ? giải thích vì sao ?
a) trên mỗi khoảng mà hàm số y = \(\sin\)x đồng biến thì hàm số y = \(\cos\)x nghịch biến .
b) trên mỗi khoảng mà hàm số y = \(\sin\)2x đồng biến thì hàm số y = \(\cos\)2x nghịch biến
Tìm đạo hàm của các hàm số sau :
a) \(y=\left(x^7-5x^2\right)x^3\)
b) \(y=\left(x^2+1\right)\left(5-3x^2\right)\)
c) \(y=\dfrac{2x}{x^2-1}\)
d) \(y=\dfrac{3-5x}{x^2-x+1}\)
e) \(y=\left(m+\dfrac{n}{x^2}\right)^3\) (m, n là các hằng số)
a) y' = 3.(x7- 5x2)2.(x7- 5x2)' = 3.(x7 - 5x2)2.(7x6 - 10x) = 3x.(x7 - 5x2)2(7x5 - 10).
b) y = 5x2 - 3x4 + 5 - 3x2 = -3x4 + 2x2 + 5, do đó y' = -12x3 + 4x = -4x.(3x2 - 1).
c) y' = = = .
d) y' = = = .
e) y' = 3. . = 3. = - ..
Xác định m để bất phương trình sau nghiệm đúng với mọi \(x\in R\)
a) \(f'\left(x\right)>0\) với \(f\left(x\right)=\dfrac{m}{3}x^3-3x^2+mx-5\)
b) \(g'\left(x\right)< 0\) với \(g\left(x\right)=\dfrac{m}{3}x^3-\dfrac{m}{2}x^2+\left(m+1\right)x-15\)
xét hàm số y = f(x) = \(\cos\frac{x}{2}\).
a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\) .
a) chứng minh rằng với mỗi số nguyên \(k\) , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y =\(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y =\(\cos\frac{x}{2}\) .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh ằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\).
cho hàm số y = f(x) = \(2\sin2x\) .
a) lập bảng biến thiên của hàm số y = \(2\sin2x\) trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
b) vẽ đồ thị của hàm số y = \(2\sin2x\) .
a: \(y=-x^3-3x^2+\left(5-m\right)x\)
=>\(y'=-3x^2-3\cdot2x+5-m\)
=>\(y'=-3x^2-6x+5-m\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(36+12\left(5-m\right)< =0\)
=>\(36+60-12m< =0\)
=>\(-12m+96< =0\)
=>-12m<=-96
=>m>=8
b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)
=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)
=>\(y'=3x^2+\left(4m-4\right)x+m\)
Để hàm số đồng biến trên R thì y'>=0 với mọi x
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)
=>\(16m^2-32m+16-12m< =0\)
=>\(16m^2-44m+16< =0\)
=>\(4m^2-11m+4< =0\)
=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)