Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)
a: \(k=xy=\dfrac{1}{2}\cdot\left(-12\right)=-6\)
=>y=-6/x
b: Khi x=-2 thì y=3
Khi x=3 thì y=-2
Sửa: \(\dfrac{2x-3y}{4}=\dfrac{3y-4z}{5}=\dfrac{2z-x}{6}\)
\(\Rightarrow\dfrac{2x-3y}{4}=\dfrac{3y-4z}{5}=\dfrac{4z-2x}{12}=\dfrac{2x-3y+3y-4z+4z-2x}{4+5+12}=0\\ \Rightarrow\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\4z-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\4z=2x\end{matrix}\right.\Rightarrow2x=3y=4z\)
Vậy x,y,z tỉ lệ nghịch với 2;3;4
\(\begin{array}{l}a)\dfrac{x}{6} = \dfrac{{ - 3}}{4}\\x = \dfrac{{( - 3).6}}{4}\\x = \dfrac{{ - 9}}{2}\end{array}\)
Vậy \(x = \dfrac{{ - 9}}{2}\)
\(\begin{array}{l}b)\dfrac{5}{x} = \dfrac{{15}}{{ - 20}}\\x = \dfrac{{5.( - 20)}}{{15}}\\x = \dfrac{{ - 20}}{3}\end{array}\)
Vậy \(x = \dfrac{{ - 20}}{3}\)
1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)
Xét công thức : \(s = \dfrac{{50}}{m}\) ta thấy s tỉ lệ nghịch với m theo hệ số tỉ lệ 50
Xét công thức : \(x=7y\) ta thấy y tỉ lệ thuận với x theo hệ số tỉ lệ 7
Xét công thức : \(t = \dfrac{{12}}{v}\) ta thấy t tỉ lệ nghịch với v theo hệ số tỉ lệ là 12
Xét công thức : \(a = \dfrac{{ - 5}}{b}\) ta thấy a tỉ lệ nghịch với b theo hệ số tỉ lệ -5