Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(y+\sqrt{1+y^2}\right)\left(x+\sqrt{1+x^2}\right)=1\)
\(\Leftrightarrow x+\sqrt{1+x^2}=\sqrt{1+y^2}-y\) (nhân liên hợp 2 vế)
Tương tự ta có: \(y+\sqrt{1+y^2}=\sqrt{1+x^2}-x\)
Cộng vế với vế:
\(x+y+\sqrt{1+x^2}+\sqrt{1+y^2}=\sqrt{1+y^2}+\sqrt{1+x^2}-x-y\)
\(\Rightarrow2\left(x+y\right)=0\)
\(\Rightarrow x+y=0\) \(\Rightarrow y=-x\)
\(P=x^7+\left(-x\right)^7+2\left(x^5+\left(-x\right)^5\right)-3\left(x^3+\left(-x\right)^3\right)+4\left(x-x\right)+100=100\)
\(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
=>\(\left(x+y\right)^2+7\left(x+y\right)+6,25+2,25\)=0
=>\(\left(\left(x+y\right)+3,5\right)^2-2,25=0\)
=>...
=>\(\left(x+y\right)=-4\)hoặc \(x+y=-2\)
=>Giá trị nhỏ nhất của S là
x+y+1=-4+1=-3
Giá trị lớn nhất của S là
x+y+1=-2+1=-1
Xin lỗi , Dòng thứ nhất có \(2y^2 \) mà sao đến dòng thứ 2 của bạn thì lại còn có \(y^2\) .